Những câu hỏi liên quan
HP
Xem chi tiết
H24
18 tháng 1 2019 lúc 17:54

=> \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

đoạn tiếp tham khảo tại: Boul đz :D

Bình luận (0)
H24
Xem chi tiết
PH
18 tháng 1 2022 lúc 21:19

heo dõi mk dc k

Bình luận (4)
H24
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
HC
1 tháng 3 2020 lúc 10:13

-(-219)+(-219)-401+12

Bình luận (0)
 Khách vãng lai đã xóa
NH
30 tháng 4 2020 lúc 18:01

https://olm.vn/hoi-dap/detail/108515110153.html

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
9 tháng 4 2020 lúc 11:02

\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)

\(=> (a+b+c)(1/a +1/b+1/c) = 1\)

\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)

\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)

\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)

\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)

\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)

\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)

\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)

\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)

\(<=> (b+c)[a(a+b) + c(a+b)] =0\)

\(<=> (b+c)(a+b)(a+c) =0 \)

<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)

\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)

Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
QT
Xem chi tiết
NH
Xem chi tiết