\(2018^{13}-2018^{12}.......2018^{11}2018^{10}\)
so sánh và giải thích
giúp với nhé. thank
So sánh: \(\frac{2018^{13}+1}{2018^{14}+1}\)và \(\frac{2018^{12}+1}{2018^{13}+1}\)
Đặt : \(A=\frac{2018^{13}+1}{2018^{14}+1}\); \(B=\frac{2018^{2012}+1}{2018^{2013}+1}\)
Ta có :
\(2018A=\frac{2018.\left(2018^{13}+1\right)}{2018^{14}+1}\)
\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}=\frac{2018^{14}+1+2017}{2018^{14}+1}=\frac{2018^{2014}+1}{2018^{14}+1}+\frac{2017}{2018^{14}+1}=1+\frac{2017}{2018^{14}+1}\)
\(2018B=\frac{2018.\left(2018^{12}+1\right)}{2018^{13}+1}\)
\(2018B=\frac{2018^{13}+2018}{2018^{13}+1}=\frac{2018^{13}+1+2017}{2018^{13}+1}=\frac{2018^{13}+1}{2018^{13}+1}+\frac{2017}{2018^{13}+1}=1+\frac{2017}{2018^{13}+1}\)
Vì 201814 + 1 > 201813 + 1 nên \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
\(\Rightarrow1+\frac{2017}{2018^{14}+1}< 1+\frac{2017}{2018^{13}+1}\)Hay : A < B
Vậy A < B
Đặt \(A=\frac{2018^{13}+1}{2018^{14}+1}\)và \(B=\frac{2018^{12}+1}{2018^{13}+1}\)
Ta có :
\(2018A=\frac{\left(2018^{13}+1\right)\times2018}{2018^{14}+1}\) \(2018B=\frac{\left(2018^{12}+1\right)\times2018}{2018^{13}+1}\)
\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}\) \(2018B=\frac{2018^{13}+2018}{2018^{13}+1}\)
\(2018A=\frac{2018^{14}+1+2017}{2018^{14}+1}\) \(2018B=\frac{2018^{13}+1+2017}{2018^{13}+1}\)
\(2018A=1+\frac{2017}{2018^{14}+1}\) \(2018B=1+\frac{2017}{2018^{13}+1}\)
Vì \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
\(\Rightarrow2018A< 2018B\)
\(\Rightarrow A< B\)
Vậy : \(\frac{2018^{13}+1}{2018^{14}+1}< \frac{2018^{12}+1}{2018^{13}+1}\)
Đặt \(B=\frac{2018^{13}+1}{2018^{14}+1}\Rightarrow2018B=\frac{2018.\left(2018^{13}+1\right)}{2018^{14}+1}\)
\(\Rightarrow2018B=\frac{2018^{14}+2018}{2018^{14}+1}=\frac{2018^{14}+1+2017}{2018^{14}+1}\)\(=\frac{2018^{14}+1}{2018^{14}+1}+\frac{2017}{2018^{14}+1}\)
\(=1+\frac{2017}{2018^{14}+1}\)
Đặt \(C=\frac{2018^{12}+1}{2018^{13}+1}\Rightarrow2018C=\frac{2018.\left(2018^{12}+1\right)}{2018^{13}+1}\)
\(\Rightarrow2018C=\frac{2018^{13}+2018}{2018^{13}+1}=\frac{2018^{13}+1+2017}{2018^{13}+1}\)
\(=\frac{2018^{13}+1}{2018^{13}+1}+\frac{2017}{2018^{13}+1}=1+\frac{2017}{2018^{13}+1}\)
Vì \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
=> B < C
\(\Rightarrow\frac{2018^{13}+1}{2018^{14}+1}< \frac{2018^{12}+1}{2018^{13}+1}\)
So sánh 10 mũ 2018 + 5 / 10 mũ 2018 - 8 và 10 mũ 2019 + 6 / 10 mũ 2019 - 7
Các bạn giải full giúp mình nhé
Không dùng máy tính hãy so sánh A=10^2016+2018/10^2017+2018 và B=10^2017+2018/10^2018+2018
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à
\(So sánh : A =\frac{10^{2018}+1}{10^{2018}-1} và B = \frac{10^{2018}}{10^{2018}-2}\)
A = 6cs + 7cs - 1 = 7cs
B = 12cs - 2 = 12 cs
==>A>B
So sánh 2018^10 +2018^11 và 2019^11
ta có: 201810+201811=201810.(1+2018) = 201810.2019
201911=201910.2019
=> 201810<201910 => 201810.2019 < 201910.2019
=> 201810+201811<201911
ta có:
201810+201811=201810.(1+2018) = 201810.2019
201911=201910.2019
=> 201810<201910 => 201810.2019 < 201910.2019
=> 201810+201811<201911
Ta có:
201810+201811=201810.(1+2018) = 201810.2019
201911=201910.2019
=> 201810<201910 => 201810.2019 < 201910.2019
=> 201810+201811<201911
hok tốt
So sánh
A =\(\frac{10^{2016}+2018}{10^{2017}+2018}\) và B =\(\frac{10^{2017}+2018}{10^{2018}+2018}\)
Các bạn giải rõ giúp mk nhá
Mk cần trc 6 giờ 45 phút nha
\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)
\(=1+\frac{18162}{10^{2017}+2018}\)
\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)
\(=1+\frac{18162}{10^{2018}+2018}\)
Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)
=> 10A > 10B
=> A > B
Hãy so sánh:
A=10^2016+2018/10^2017+2018
B=10^2017+2018/10^2018+2018
nhanh lên các bn mik cần gấp
So Sánh :Cho A=2015/2018^3+2017/2018^4 và B=2017/2018^3+2015/2018^4
đề thi học kì khối 6 giải giúp mình với
\(\frac{2015}{2018^3}-\frac{2017}{2018^3}=-\frac{2}{2018^3}\) \(\frac{2015}{2018^4}-\frac{2017}{2018^4}=-\frac{2}{2018^4}\)
vì \(-\frac{2}{2018^3}< -\frac{2}{2018^4}\Rightarrow\frac{2015}{2018^3}-\frac{2017}{\cdot2018^3}< \frac{2015}{2018^4}-\frac{2017}{2018^4}\)
chuyển vế ta đc : \(\frac{2015}{2018^3}+\frac{2017}{2018^4}< \frac{2017}{2018^3}+\frac{2015}{2018^4}\)
A = 2015.2018/2018^4 + 2017/2018^4 = 2015.2018+2017/2018^4
B=2017.2018/2018^4 + 2015/2018^4 = 2017.2018+2015/2018^4
Vì 2015.2018+2017<2017.2018+2015 nên A<B
So sánh A và B:
A=\(\frac{10^{2016}+2018}{10^{2017}+2018^{ }}\)
B=\(\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)
\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)
Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)
=> 10A>10B
=>A>B