Những câu hỏi liên quan
PS
Xem chi tiết
LQ
Xem chi tiết
L1
22 tháng 10 2015 lúc 21:08

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

Bình luận (0)
LA
Xem chi tiết
TL
13 tháng 7 2015 lúc 16:01

Xét 3 số 10p ; 10p + 1 ; 10p + 2  là 3 số tự nhiên liên tiếp

=> Tích của chúng là 10p.(10p + 1).(10p + 2) chia hết cho 3

mà p là số nguyên tố; 10 không chia hết cho 3 => 10p không chia hết cho 3

10p + 1 là số nguyên tố nên không chia hết cho 3

Do đó, 10p + 2 chia hết cho 3  ; Mà 10p + 2 = 2. (5p + 1) và 2 không chia hết cho 3 nên 5p + 1    chia hết cho 3

Vì p là snt > 3 => p lẻ => 5p+ 1 chẵn nên chia hết cho 2

Vậy 5p + 1 chia hết cho cả 2 và 3 nên chia hết cho 6

Bình luận (0)
TN
Xem chi tiết
H24
2 tháng 4 2018 lúc 22:42

  zdvdz

Bình luận (0)
NM
Xem chi tiết
DD
Xem chi tiết
LC
21 tháng 10 2015 lúc 21:53

1)

Ta có: a+a+2=2a+2=2.(a+1)

Vì a là số nguyên tố lớn hơn 3

=>a là số lẻ

=>a+1 là số chẵn

=>a+1 chia hết cho 2

=>2.(a+1) chia hết cho 4

=>a+a+2 chia hết cho 4(1)

Lại có:

Vì a là số nguyên tố lớn hơn 3

=>a có 2 dạng 3k+1 và 3k+2

*Xét a=3k+1=>a+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét a=3k+2=>a+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: a+a+2=2a+2=2.(3k+2)+2=2.3k+4+2=3.2k+6=3.(2k+3) chia hết cho 3

=>a+a+2 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

a+a+2 chia hết cho 4 và 3

mà (4,3)=1

=>a+a+2 chia hết cho 4.3

=>a+a+2 chia hết cho 12

Vậy tổng của n và n+2 chia hết cho 12

Bình luận (0)
B1
Xem chi tiết
AM
12 tháng 6 2015 lúc 22:04

a)2x+y=7(2x+y)=14x+7y

Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9

9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9

b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2

p là số nguyên tố lớn hơn 3 nên

*)P=3k(loại vì 3k là hợp số  có ước là 3 và k)

*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)

*)p=3k+2(TM)

=>2p+2=6k+4+2=6k+6 chia hết cho 3

2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6

=>(2p+2).1/2=p+1 chia hết cho 6

Bình luận (0)
RN
22 tháng 2 2018 lúc 16:57

^.^

^-^

^_^

Bình luận (0)
TV
11 tháng 12 2024 lúc 21:54

=))

Bình luận (0)
NL
Xem chi tiết
AH
14 tháng 1 2017 lúc 0:07

Lời giải:

Bài 1)

Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)

Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)

Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.

P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.

Bình luận (0)
AH
14 tháng 1 2017 lúc 0:48

Câu 2:

a) Câu này hoàn toàn dựa vào tính chất của số chính phương

Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:

\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)

Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên

\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$

Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)

b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$

Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$

Do đó $k\vdots 3$ $(2)$

Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)

Bình luận (0)
TH
Xem chi tiết
SG
30 tháng 6 2016 lúc 11:55

Do a; b nguyên tố > 3 => a; b không chia hết cho 3

=> a2; b2 không chia hết cho 3

=> a2; b2 đều chia 3 dư 1

=> a2 - b2 chia hết cho 3 (1)

Do a,b nguyên tố > 3 => a; b lẻ

=> a2; b2 lẻ

=> a2; b2 đều chia 8 dư 1

=> a2 - b2 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => a2 - b2 chia hết cho 24

=> đpcm

Ủng hộ mk nha ^-^

Bình luận (0)