Những câu hỏi liên quan
VH
Xem chi tiết
H24
26 tháng 11 2018 lúc 7:12

Đặt \(x^2+13=t\Leftrightarrow x^2=t-13\).Thay vào,ta có:

\(PT\Leftrightarrow\left(t-13\right)^2+\left(t-13\right)=0\)

Mà \(\left(t-13\right)^2\ge0\) nên \(\left(t-13\right)^2+\left(t-13\right)\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(t-13\right)^2=t-13\)

Dễ giải được t = 12. Suy ra \(x^2=t-13=12-13=-1\)

Suy ra phương trình vô nghiệm. (do \(x^2\ge0\forall x\))

Vậy \(x\in\varnothing\)

Bình luận (0)
ND
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
XO
16 tháng 9 2023 lúc 6:07

\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)

\(\Leftrightarrow x=\sqrt{5+\sqrt{13+x}}\) (\(x\ge0\))

\(\Leftrightarrow x^2=5+\sqrt{13+x}\)

\(\Leftrightarrow x^2-9=\sqrt{13+x}-4\)

\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=\dfrac{x-3}{\sqrt{13+x}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=\dfrac{1}{\sqrt{x+13}+4}\left(∗\right)\end{matrix}\right.\)

Xét (*) ta có VT \(\ge3\) (1)

mà \(VP=\dfrac{1}{\sqrt{x+13}+4}\le\dfrac{1}{4}\) (2)

Từ (1) và (2) dễ thấy (*) vô nghiệm 

Hay x = 3

 

 

Bình luận (0)
SD
Xem chi tiết
TN
11 tháng 6 2018 lúc 11:05

a) Ta có: \(\sqrt{x^2+6x+9}=3x-1\)

\(\Rightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Rightarrow\)\(x+3=3x-1\)

\(\Rightarrow x-3x=-1-3\Rightarrow-2x=-4\Rightarrow x=2\).

b) \(\sqrt{x^4}=7\)

\(\Rightarrow x^2=7\)

\(\Rightarrow x=-7\)hoặc \(x=7\).

c) Ta có: \(x^2+2\sqrt{13}x=-13\)

\(\Rightarrow x^2+2\sqrt{13}x+13=0\)

\(\Rightarrow\left(x+\sqrt{13}\right)^2=0\Rightarrow x+\sqrt{13}=-\sqrt{13}\).

Chúc bn hc tốt!

Bình luận (0)
GV
11 tháng 6 2018 lúc 11:26

a) \(\sqrt{x^2+6x+9}=3x-1\)

  Ta thấy vế trái là căn bậc hai nên là số không âm => vế phải cũng phải là số không âm

=> \(3x-1\ge0\Rightarrow x\ge\frac{1}{3}\)

Khi đó phương trình tương đương với:

  \(\sqrt{\left(x+3\right)^2}=3x-1\)

 \(\Leftrightarrow\left|\left(x+3\right)\right|=3x-1\)

Do \(x\ge\frac{1}{3}\) nên \(x+3>0\), phương trình trên trở thành:

  \(x+3=3x-1\)

\(\Leftrightarrow x=2\)

Đối chiếu với điều kiện \(x\ge\frac{1}{3}\) thì x =2 thỏa mãn

b) \(\sqrt{x^4}=7\)

   \(\Leftrightarrow x^2=7\)

  \(\Leftrightarrow x=\pm\sqrt{7}\)

c) \(x^2+2\sqrt{13}x+13=0\)

  \(\Leftrightarrow x^2+2\sqrt{13}x+\sqrt{13}^2=0\)

  \(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

  \(\Leftrightarrow x=-\sqrt{13}\)

Bình luận (0)
DA
11 tháng 6 2018 lúc 12:26

a)x+3=3x-1

-2x=-4

x=2

Bình luận (0)
PY
Xem chi tiết
LA
4 tháng 7 2019 lúc 10:02

\(\sqrt{x^2-6x+13}=0\)

\(\Leftrightarrow x^2-6x+13=0\)

\(\Leftrightarrow x^2-6x+9+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+4=0\)

Mà: \(\left(x+3\right)^2+4\ge4>0\forall x\)

=> Không có giá trị của x thỏa mãn

\(\sqrt{x^2+4}=x+2\)

\(\Leftrightarrow\hept{\begin{cases}x^2+4=\left(x+2\right)^2\\x+2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+4=x^2+4x+4\\x>-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x>-2\end{cases}}\)

Vậy: PT có tập nghiệm S = { 0 }

=.= hk tốt!!

Bình luận (0)
H24
Xem chi tiết
TM
Xem chi tiết
HC
Xem chi tiết
H24
28 tháng 11 2021 lúc 21:53

\(a,ĐKXĐ:x\ge1\\ 13-\sqrt{x-1}=10\\ \Leftrightarrow\sqrt{x-1}=3\\ \Leftrightarrow x-1=9\\ \Leftrightarrow x=10\\ b,ĐKXĐ:x\in R\\ \sqrt{\left(2x-1\right)^2}-1=3\\ \Leftrightarrow\left|2x-1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=-4\\2x-1=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)