Tìm n thuộc N biết n^2 +3 chia hết n+1
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
bài 1 tìm n thuộc N biết:
a) 8 chia hết (n-2)
b) (2.n+1)chia hết (6-n)
c) 3.n chia hết (n-1)
d) (3.n+5) chia hết (2.n+1)
a) => n-1 = 1;-1;8;-8;4;-4;2;-2
=> n = 2;0;9;5;3
b) 6-n chia hết cho 6-n
=> 12-2n chia hết cho 6-n
=> 2n+1+12-2n chia hết cho 6-n
=> 13 chia hết cho 6-n
=> 6-n = 1;-1;13;-13
=> n= 5;7;19
c) n-1 chia hết cho n-1 nên 3n-3 chia hết cho n-1
=> 3n-(3n-3) chia hết cho n-1
=> 3 chia hết cho n-1
=> n-1 = 1;-1;3;-3
=> n=2;0;4
d) 3n+5 chia hết cho 2n+1 nên 6n+10 chia hết cho 2n+1
2n+1 chia hết cho 2n+1 nên 6n+3 chia hết cho 2n+1
=> (6n+10)-(6n+3) chia hết cho 2n+1
=> 7 chia hết cho 2n+1
=> 2n+1 = 1;-1;7;-7
=> n = 0;3
@Phạm Ngọc Thạch: Đề là "Tìm n thuộc N" mà sao lại có số nguyên âm!
bài 1:Tìm n thuộc N biết:
a) 2n+1 chia hết cho n-3
b)n^2 + 3 chia hết cho n+1
bài 2:tìm n biết 1+3+5+7+...+(2n+1)=169
a) 2n-6+7 chia het n- 3
=> 7 chia het n-3
n-3={+1-+-7}
n={-4,2,4,10} loai -4 di
b) n^2+3 chia (n+1)
n^2+n-n-1+4 chia n+1
n+ 1={+-1,+-2,+-4}
n={-5,-3,-2,0,1,3} loai -5,-3,-2, di
n={013)
bài 1:Tìm n thuộc N biết:
a) 2n+1 chia hết cho n-3
b)n^2 + 3 chia hết cho n+1
bài 2:tìm n biết 1+3+5+7+...+(2n+1)=169
a : 2n + 1 ⋮ n - 3 <=> 2n - 6 + 7 ⋮ n + 3 <=> 2( n - 3 ) + 7 ⋮ n - 3
=> 7 ⋮ n - 3 => n - 3 thuộc ước của 7 => U(7) = { 1 ; 7 }
=> n - 3 = { 1 ; 7 }
=> n = { 4 ; 11 }
b ) n2 + 3 ⋮ n + 1 <=> n2 - 1 + 4 ⋮ n + 1 => ( n - 1 ) ( n + 1 ) + 4 ⋮ n + 1
=> 4 ⋮ n + 1 <=> n + 1 thuộc ước của 4 => Ư(4) = { 1 ; 2 ; 4 }
=> n + 1 = { 1 ; 2 ; 4 }
=> n = { 0 ; 1 ; 3 }
a) 2n+1 chia hết cho n-3=>2n-6+7 chia hết cho n-3=>7 chia hết cho n-3=>n-3 thuộc Ư(7) từ đó tính tiếp
a) Ta có:
(2n + 1) chia hết cho (n - 3)
=> [(2n - 6 ) + 7] chia hết cho (n - 3)
=> [2(n - 3) - 7] chia hết cho (n - 3)
Vì 2(n - 3) chia hết cho (n - 3) nên để [2(n - 3) - 7] chia hết cho (n - 3) thì 7 chia hết cho (n - 3)
=> (n - 3) \(\in\)Ư(7)
Mà Ư(7) = {1 ; 7}
nên n - 3 \(\in\){1 ; 7}
=> n \(\in\){4 ; 10}
Vậy n = 4 hoặc n = 10
b) Ta có:
(n2 + 3) chia hết cho (n + 1)
(n2 + n - n + 3) chia hết cho (n + 1)
[n(n + 1) - (n + 1) + 2] chia hết cho (n + 1)
Vì n(n + 1) chia hết cho (n + 1) và (n + 1) chia hết cho (n + 1) nên để [n(n + 1) - (n + 1) + 2] chia hết cho (n + 1) thì 2 chia hết cho(n+1)
=> n + 1 \(\in\)Ư(2)
Mà Ư(2) = {1 ; 2}
nên n + 1 \(\in\){1 ; 2}
=> n \(\in\){0 ; 1}
Vậy n = 0 hoặc n = 1
Bài 1 : Tìm n thuộc N biết
a) 8 chia hết (n-2)
b) (2 . n +1) chia hết (6 - n)
c) 3.n chia hết (n - 1)
d) (3 . n + 5) chia hết (2 . n + 1)
a) So sánh A với 0, biết: A= 1(-2)2.3(-4)4....49(-50)50
b) Tìm n thuộc Z, biết: (n+3) chia hết (n-1)
c) Tìm n thuộc Z , biết: (n-7) chia hết (2n+1)
b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1
=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}
Lập bảng giá trị:
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n ∈ {2; 0; 3; -1; 5; -3}
phần a,c mk ko biết làm nhé ~
b) n + 3 ⋮ n - 1 <=> (n - 1) + 4 ⋮ n - 1
=> 4 ⋮ n - 1 (vì n - 1 ⋮ n - 1)
=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}
Lập bảng giá trị:
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n ∈ {2; 0; 3; -1; 5; -3}
chúc các bn hok tốt !
Tìm n thuộc N biết: n^2+(n+1)^2+(n+3)^2 chia hết cho 5
Ta có;
\(n^2+\left(n+1\right)^2+\left(n+3\right)^2\)
\(=n^2+n^2+2n+1+n^2+6n+9\)
\(=3n^2+8n+10\)
Ta có:
\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]⋮5\)
\(\Leftrightarrow n^2+\left(n+1\right)^2+\left(n+3\right)^2\equiv0\left(mod5\right)\)
\(\Leftrightarrow3n^2+8n+10\equiv0\left(mod5\right)\)
\(\Leftrightarrow3n^2+3n\equiv0\left(mod5\right)\)
\(\Leftrightarrow n\left(n+1\right)\equiv0\left(mod5\right)\)
Do đó n phải có dạng \(5k\) hoặc \(5k+4\)(\(k\in N\))
Tìm n thuộc Z biết
4n+3 chia hết cho 3n-2
2n+3 chia hết chon-1
n^2+5n-1 chia hết cho n-3
n^2 -5 chia hết cho n+4
2) Tìm x,y thuộc Z
xy+2y-3x=11
4x-xy+2y+3=0
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
2n+3 chia hết cho n-1
<=> 2n+3-2(n-1) chia hết cho n-1
<=>5 chia hết cho n-1
<=> n-1 E {-1;1;5;-5}
<=> n E {0;2;6;-4}
bài nào chứ mấy bài này dài ngoằng =((
Vì vai trò m, n như nhau, giả sử m≥n
Xét các trường hợp:
Nếu m=n thì 2m+1⋮m⇒m=n=1 Nếu m>n, đặt 2n+1=pm (p∈N∗)Vì 2m>2n⇒2m>2n+1=pm⇒p<2⇒p=1
Khi p=1 thì: 2n+1=m⇒2(2n+1)+1=2m+1⋮n⇒4n+3⋮n⇒3⋮n⇒n=1;3
Với n=1 thì m=3
Với n=3 thì m=7
Vậy (m;n)={(1;1); (3;1); (7;3)}
Tìm n thuộc Z biết:
a) n+2 chia hết cho n-1.
b) n-7 chia hết cho 2n+3.
c) n^2-2 chia hết cho n+3
a ) n + 2 chia hết cho n - 1
=> ( n-1 ) + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thược Ư(3 ) = 1 ;3
=> n thuộc 2 ; 4
Vậy ...............................
n-7chia hết cho 2n+3
\(\Rightarrow2\left(n-7\right)⋮2n+3\)
\(\Rightarrow2\left(n+3\right)-20⋮2n+3\)
\(\Rightarrow20⋮2n+3\)
\(\Rightarrow2n+3\in U\left(20\right)=1,2,4,5,20\)
\(\Rightarrow n\in1\)
c,\(n^2-2⋮n+3\)
\(\Rightarrow n^2-9+7⋮n+3\)
\(\Rightarrow\left(n+3\right)\left(n-3\right)+7⋮n+3\)
\(\Rightarrow7⋮n+3\)
\(\Rightarrow n+3\inư\left(7\right)=1,7\)
\(\Rightarrow n\in4\)
tìm n thuộc N biết
a) 8 chia hết (n-2)
b) (2x n + 1) chia hết (6-1)
c) 3 x n chia hết (n - 1)
d) (3x n + 5)chia hết ( 2 x n +1 )