Những câu hỏi liên quan
H24
Xem chi tiết
NL
23 tháng 6 2021 lúc 22:02

+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;

+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)

<=> m = 0 .

Bình luận (1)
BK
Xem chi tiết
TV
Xem chi tiết
DA
Xem chi tiết
DD
Xem chi tiết
HH
Xem chi tiết
TQ
12 tháng 6 2021 lúc 11:30

\(#\)GTNN đưa về dạng \(A^2+m\) với \(m\) là hằng số khi đó ta được \(A^2\)\(+m\) ≥\(m\) sau đó tìm dấu "=" xảy ra khi nào ( Dấu bằng xảy ra khi A\(^2\)\(=0\)) sau đó kết luận .

VD : Tìm GTNN của \(A=\)\(x^2+2x+3\) 

\(=\left(x^2+2x+1\right)+2\)\(=\left(x+1\right)^2+2\) ≥ \(2\)

Dấu "=" xảy ra khi \(\left(x+1\right)^2=0=>x=-1\)

Vậy \(A_{min}=2< =>x=-1\)

\(#\)GTLN đưa về dạng \(k-B^2\) với \(k\) là hằng số khi đó ta tìm được \(k-B^2\)≤ \(k\) sau đó tìm dấu "=" xảy ra khi nào ( Dấu bằng xảy ra khi \(B^2=0\)) sau đó kết luận.

VD Tìm GTLN của \(B=10+4x-x^2\)

B\(=-x^2+4x-4+14\)\(=14-\left(x^2-4x+4\right)\)\(=14-\left(x-2\right)^2\) ≤ 14

Dấu "=" xảy ra khi \(\left(x-2\right)^2=0=>x=2\)

Vậy \(B_{max}=14< =>x=2\)

 

 

Bình luận (0)
VL
Xem chi tiết
NL
7 tháng 5 2016 lúc 13:28

đạt gtnn là 17/4 khi x=căn bậc hai của 5 rồi chia cho 2 (2 không nằm trong dấu căn)

Bình luận (0)
H3
Xem chi tiết
EC
23 tháng 9 2021 lúc 18:31

Ta có: \(E=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

              \(=5-\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

              \(=5-\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

              \(=5-\left(x^2+5x-6\right)\left(x^2+5x-6\right)\)

Đặt \(t=x^2+6x\)

   \(\Rightarrow E=5+\left(t-6\right)\left(t+6\right)\)

            \(=5+t^2-36\)

            \(=t^2-31\)

Mà \(t^2\ge0\Rightarrow t^2-31\ge-31\)

              \(\Rightarrow E\ge-31\)

Dấu "=" xảy ra \(\Leftrightarrow t^2=0\Leftrightarrow t=0\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\)

                                                                              \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Bình luận (2)
NM
23 tháng 9 2021 lúc 18:34

\(E=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ E=5-\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ E=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Cách 1: \(E=5-\left(x^2+5x\right)^2+36=-\left(x^2+5x\right)^2+41\le41\)

\(E_{max}=41\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Cách 2: Đặt \(x^2+5x=t\)

\(\Leftrightarrow E=5-\left(t+6\right)\left(t-6\right)=5-t^2+36=-t^2+41\le41\\ E_{max}=41\Leftrightarrow t=0\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

 

Bình luận (1)
H24
Xem chi tiết