tìm các số tự nhiên x,y biết rằng:
a, \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
b,\(2^{x+1}.3^y=12^x\)
Tìm 2 số tự nhiên x và y biết : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
=>40=(1-2y)x
từ đó lập bảng
1. Tìm các số nguyên x, y biết rằng \(\frac{x}{y}=\frac{7}{y}\)và x<y<0
2. Có tồn tại số tự nhiên n nào để 2 phân số \(\frac{7n-1}{4}và\frac{5n+3}{12}\)
đồng thời là các số tự nhiên
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
tìm các số tự nhiên x và y sao cho :
a) \(\frac{x}{y}-\frac{4}{y}=\frac{1}{5}\)
b) \(\frac{4}{x}+\frac{y}{3}=\frac{5}{6}\)
kho the
anh cu k em nhe
em la ban anh ma
em cung k anh vai cai roi thay
Mấy bồ nhấn dấu gạch phân số và dấu suy ra như thế nào vậy ?
\(\left(a\right)\frac{x}{y}-\frac{4}{y}=\frac{1}{5}\left(y\inℕ^∗\right)\)
\(\frac{x-4}{y}=\frac{1}{5}\)
\(x-4=\frac{y}{5}\)
\(y=5\left(x-4\right)\)
\(y=5x-20\)
Vì x là STN, \(y\inℕ^∗\)nên: \(x\inℕ^∗\)
Vậy x, y thỏa mãn với mọi \(x,y\inℕ^∗\)
Tìm x, y lá số tự nhiên khác 0, biết
a) \(\frac{1}{x}-\frac{2}{y}=\frac{1}{4}\)
b)\(\frac{x}{2}+\frac{3}{y}=\frac{4}{7}\)
Tìm hai số tự nhiên x và y biết \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Tìm các số tự nhiên x,y,z biết rằng:
\(\frac{x}{3}=\frac{14}{y}=\frac{z}{60}=\frac{8}{12}\)
\(\frac{8}{12}=\frac{2}{3}=\frac{x}{3}=\frac{14}{21}=\frac{14}{y}=\frac{40}{60}=\frac{z}{60}\Rightarrow x=2;y=21;z=40.\)
a) Tìm 3 số nguyên dương biết tổng của chúng bằng nửa tích của chúng
b) tìm các số tự nhiên x,y soa cho ƯCLN (x,y) = 1 và\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
c) So sánh A =\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\) và B =\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+......+\frac{1}{17}\)
mik fan Phong ca nè bạn