Những câu hỏi liên quan
H24
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
DL
13 tháng 4 2016 lúc 18:36

Ta nhận thấy mẫu của biểu thức trên là:

              x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)

            =x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)

            =(x24+x20+...+1)(x2+1)

Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)

Bình luận (0)
NN
13 tháng 3 2018 lúc 20:37

Tự hỏi tự trả lời

Bình luận (0)
NT
22 tháng 11 2018 lúc 20:36

học giỏi vclllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll.......

Bình luận (0)
NJ
Xem chi tiết
NJ
10 tháng 11 2018 lúc 19:09

các bn giúp mình nhanh nhé. Mình cần gấp

Bình luận (0)
H24
Xem chi tiết
NH
4 tháng 3 2020 lúc 20:24

\(\frac{x^{30}+x^{28}+x^{26}+x^{24}+...+x^4+x^2+1}{x^{28}+x^{24}+x^{20}+...+x^8+x^4+1}=\frac{\left(x^{30}+x^{26}+x^{22}+...+x^2\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+x^{20}+...+x^4+1}\)

\(=\frac{x^2\left(x^{28}+x^{24}+...+x^4+1\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)

\(=\frac{\left(x^2+1\right)\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)

\(=x^2+1\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
DH
Xem chi tiết
TL
Xem chi tiết
ML
26 tháng 7 2015 lúc 12:39

Xét \(x\ne1\)

Đặt \(y=x^4\).\(M=x^{28}+x^{24}+...+x^4+1\)

\(M=y^7+y^6+...+y^2+y+1\)\(\Rightarrow Ay=y^8+y^7+...+y^2+y\)

\(\Rightarrow M\left(y-1\right)=y^8-1\Rightarrow M=\frac{y^8-1}{y-1}=\frac{x^{32}-1}{x^4-1}\)

Tương tự \(N=x^{30}+x^{28}+...+x^2+1=\frac{\left(x^2\right)^{16}-1}{x-1}=\frac{x^{32}-1}{x-1}\)

\(A=\frac{M}{N}=\frac{\frac{x^{32}-1}{x^4-1}}{\frac{x^{32}-1}{x^2-1}}=\frac{x^2-1}{x^4-1}=\frac{1}{x^2+1}\)

Thay số vô tính ra A.

 

Bình luận (0)