Những câu hỏi liên quan
DG
Xem chi tiết
OO
Xem chi tiết
VQ
23 tháng 11 2015 lúc 10:52

Với p=3

=>8p‐1=23 ﴾thỏa mãn﴿  

8p+1=25 là hợp số =>﴾loại﴿

Với p khác 3

=>p không chia hết cho 3

=>8p không chia hết cho 3

mà ﴾8p‐1﴿p﴾8p+1﴿là tích của 3 số tự nhiên liên tiếp

Theo đề bài :8p‐1 >3 ﴾p thuộc N﴿

=>8p‐1 không chia hết cho 3

=> 8p+1 chia hết cho 3

mà 8p+1>3

=>8p+1 là hợp số ﴾ĐPCM﴿

Bình luận (0)
HP
23 tháng 11 2015 lúc 10:55

với p=3 suy ra p-1=23

8p+1=25(loại)

với p khác 3 suy ra p không chia hết cho3 suy ra 8p không chia hết cho3 mà (8p-1)p(8p+1) là tích của 3 số TN liên tiếp

Theo bài ra 8p-1>3(p thuộc N) suy ra 8p-1 ko chia hết cho 3

suy ra 8p+1 chia hết cho 3 mà 8p+1>3

suy ra 8p+1 là hợp số

Bình luận (0)
NN
23 tháng 11 2015 lúc 10:58

8p+1 là hợp số vì mày nói vậy

 

Bình luận (0)
MH
Xem chi tiết
NN
3 tháng 3 2015 lúc 21:12

nếu p lớn hơn 3 thì giải như sau

 8p-1 là số nguyên tố vậy 8p-1 dư 1 hoặc 2

mà p là số nguyên tố vậy p :3 dư 1 hoặc 2

mà 8p-1 dư 1 hoặc 2

->p:3 dư 1  vì nếu dư2 thì8p-1 chia hết cho 3

vậy 8p :3 dư2 

->8p+1 chia hết cho 3

vậy 8p+1 là hợp số

 

Bình luận (0)
TL
3 tháng 3 2015 lúc 21:49

Nhận xét : 3 số 8p-1; 8p; 8p + 1 là 3 số tự nhiên liên tiếp 

Ta có tính chất: Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3

nên tích (8p-1). 8p. (8p+1) chia hết cho 3

mà 8p ; 8p - 1 không chia hết cho 3 nên 8p+ 1 phải chia hết cho 3 => 8p+1 là số nguyên tố

Bình luận (0)
TT
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết
ST
1 tháng 2 2018 lúc 21:15

p là số nguyên tố => p không chia hết cho 3 => 8p không chia hết cho 3

Mà 8p-1,8p,8p+1 là 3 số tự nhiên liên tiếp nên trong đó có một số chia hết cho 3

=>8p-1 hoặ 8p+1 chia hết cho 3

Vậy...

Bình luận (0)
DT
Xem chi tiết
TL
24 tháng 11 2014 lúc 19:54

Nhận xét: 8p - 1, 8p, 8p + 1 là 3 số nguyên liên tiếp nên tích (8p - 1)8p.(8p +1) chia hết cho 3

hơn nữa, vì 8 không chia hết cho 3 và p, 8p + 1 là các số nguyên tố nên 8p và 8p - 1 không chia hết cho 3

suy ra 8p + 1 chia hết cho 3. Vậy 8p + 1 là hợp số.

Bình luận (0)
LT
25 tháng 11 2014 lúc 10:18

Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa

* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3

Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

Bình luận (0)
0T
19 tháng 10 2016 lúc 8:23

nhưng sao bài

này lại có cách giải

dài dòng như

thế chứ mình tưởng

ít lắm cơ mà

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
NB
24 tháng 10 2016 lúc 22:37

cái này cậu chỉ cần mở vài quyển sách nâng cao ra là được mà

Bình luận (0)
NM
24 tháng 10 2016 lúc 23:01

Nếu 8p-1 là số nguyên tố ; Nếu 8p+1 là hợp số => 8p+1 là số chẵn.

Ngoại trừ số 2 ra tất cả số chắn đều là hợp số . 

Vậy 8p+1 là hợp số do nó là số chẵn (ĐPCM)

Chỗ "do nó là số chẵn" không viết cũng được

ai thấy đúng thì tk

ai thấy sai sửa giùm mình nhé

Bình luận (0)