Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
H24
2 tháng 6 2021 lúc 17:02

Mệnh đề trên SAI.

Rất đơn giản ta thử `x=1,y=2`

`x^4+y^2=5`

`x^2y+xy^3=2+8=10`

`<=>x^2y+xy^3>x^4+y^2`.

Bình luận (1)
PB
Xem chi tiết
CT
1 tháng 9 2019 lúc 12:28

C: “∀ x ∈ R : x < x + 1”.

C : “∃ x ∈ R: x ≥ x + 1”.

C sai vì x + 1 luôn lớn hơn x.

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 6:23

∀ x ∈ R: x.1 = x. Mệnh đề sai

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2017 lúc 15:15

∀ x ∈ R: x.x = 1. Mệnh đề đúng

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 10 2018 lúc 12:49

D: “∃ x ∈ R: 3x = x2 + 1”

D : “∀ x ∈ R ; 3x ≠ x2 + 1”

D sai vì với Giải bài 7 trang 10 sgk Đại số 10 | Để học tốt Toán 10

D thỏa mãn:

Giải bài 7 trang 10 sgk Đại số 10 | Để học tốt Toán 10

Bình luận (0)
NV
Xem chi tiết
AH
8 tháng 9 2021 lúc 0:49

Lời giải:
a. Mệnh đề sai, vì $x^2\geq 0>-1$ với mọi $x\in\mathbb{R}$ theo tính chất bình phương 1 sosos.

Mệnh đề phủ định: $\forall x\in\mathbb{R}, x^2\neq -1$

b. Mệnh đề đúng, vì $x^2+x+2=(x+0,5)^2+1,75>0$ với mọi $x\in\mathbb{R}$ nên $x^2+x+2\neq 0$ với mọi $x\in\mathbb{R}$

Mệnh đề phủ định: $\exists x\in\mathbb{R}| x^2+x+2=0$

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 21:17

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:48

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.

Bình luận (0)