Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
DL
30 tháng 12 2018 lúc 21:55

\(A< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)

\(=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}=5\)

Vậy A < 5

Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
HN
14 tháng 10 2017 lúc 7:56

Ta có:

\(A=\sqrt{5\sqrt{5\sqrt{5...\sqrt{5}}}}< \sqrt{5\sqrt{5\sqrt{5...\sqrt{25}}}}=5\)

\(B=\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{25}}}=5\)

\(\Rightarrow A+B< 5+5=10\)

Bình luận (0)
KT
Xem chi tiết
PQ
20 tháng 12 2018 lúc 8:38

\(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}\)

\(=\sqrt{20+\sqrt{20+\sqrt{20+...+5}}}=\sqrt{20+\sqrt{20+\sqrt{25}}}=\sqrt{20+5}=5\)

\(\Rightarrow\)\(A< 5\)

Bình luận (0)
H24
20 tháng 12 2018 lúc 9:26

Phùng Minh Quân: Bài này trong đề thi học kì lớp 7 của trường THCS Trưng Vương ,Hà Nội -Năm 2017-2018. Trong đề ghi có tới tận 2017 dấu căn bậc hai.Nên tui nghĩ không thể làm thế được.

Bình luận (0)
PQ
20 tháng 12 2018 lúc 9:38

nếu nói ko thể thì chứng minh thử xem -,- quy luật rõ ràng v mà 

Bình luận (0)
HL
Xem chi tiết
NC
Xem chi tiết
NH
25 tháng 2 2017 lúc 17:17

Ta có: \(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5}}}}< \sqrt{5\sqrt{5\sqrt{5...\sqrt{25}}}}=...=5\)

\(\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{25}}}=...=5\)

Vậy A+B<5+5=10 (ĐPCM)

Bình luận (0)
H24
25 tháng 2 2017 lúc 5:56

vì A nhỏ hơn hoặc bằng 3 và B nhỏ hơn hoặc bằng 5 =>A+B nhỏ hơn hoặc bằng 8 => A+B<10

Bình luận (0)