Những câu hỏi liên quan
MT
Xem chi tiết
HH
Xem chi tiết
ZZ
5 tháng 7 2020 lúc 9:25

ax^3+ bx^2- 11x+30 x^2-3x-10 ax+(b-3a) ax^3+ 3ax^2-10ax x^2(b-3a)-x(11-10a)+30 x^2(b-3a)-3x(b-3a)-10(b-3a) x(3b-a-11)+10(b-3a-3)

Phần còn lại dành cho bạn ;) Đến đây nắm vững lý thuyết làm oke

Bình luận (0)
 Khách vãng lai đã xóa
HH
5 tháng 7 2020 lúc 9:44

Bạn ơi bạn làm nhầm rồi kìa ở phép chia đầu á

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
NK
Xem chi tiết
XO
22 tháng 7 2021 lúc 18:30

Ta có (ax3 + bx2 - 11x + 30) : (x2 - 3x - 10) = ax + 3a + b (dư (19a  +3b - 11)x + 10(b + 3a  +3)]

Để  (ax3 + bx2 - 11x + 30) \(⋮\) (x2 - 3x - 10) khi \(\hept{\begin{cases}19a+3b-11=0\\b+3a+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=-9\end{cases}}\)

Vậy a = 2 ; b = -9

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
H24
30 tháng 1 2022 lúc 11:00

undefined

Bình luận (0)
AH
30 tháng 1 2022 lúc 13:36

Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$

$x^2+x-2=(x-1)(x+2)$

Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$

$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức) 

$\Leftrightarrow a+b-1=-8a+4b+32=0$

$\Leftrightarrow a=3; b=-2$ 

 

Bình luận (0)
NA
Xem chi tiết
HP
Xem chi tiết
LQ
14 tháng 8 2017 lúc 22:18

 dùng  đồng nhất thức

Bình luận (0)
PL
Xem chi tiết
LC
17 tháng 8 2019 lúc 8:19

Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại 

a)

  x^3 +ax+b x^2+2x-2 x-2 x^3+2x^2-2x - -2x^2+(a+2)x+b -2x^2-4x+4 - (a+2+4)x+(b-4)

Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

Bình luận (0)
LC
17 tháng 8 2019 lúc 8:33

b) dùng phương pháp xét giá trị riêng

Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)

Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)

\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)

\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)

                 \(=0\)

\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)

\(\Leftrightarrow8a+4b-40=0\)

\(\Leftrightarrow4\left(2a+b-10\right)=0\)

\(\Leftrightarrow2a+b=10\left(1\right)\)

Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)

                             \(=0\)

\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)

\(\Leftrightarrow-125a+25b-25-50=0\)

\(\Leftrightarrow-125a+25b-75=0\)

\(\Leftrightarrow25\left(-5a+b-3\right)=0\)

\(\Leftrightarrow-5a+b=3\left(2\right)\)

Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)

                                 \(\Leftrightarrow7a=7\)

                                 \(\Leftrightarrow a=1\)

Thay a=1 vào (1 ) ta được: b=8

Vậy a=1 và b=8

Bình luận (0)
PH
Xem chi tiết