Những câu hỏi liên quan
CV
Xem chi tiết
H24
Xem chi tiết
TN
29 tháng 3 2015 lúc 11:00

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

Bình luận (0)
TN
29 tháng 3 2015 lúc 11:02

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

Bình luận (0)
HH
27 tháng 9 2017 lúc 5:56

a2= 2(2+1)(2+2)(2+3)+1

a2=2.3.4.5+1

a= 121 = 112

a = 11

Bình luận (0)
HM
Xem chi tiết
VA
28 tháng 1 2021 lúc 22:20

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

Bình luận (0)
 Khách vãng lai đã xóa
OO
Xem chi tiết
HV
11 tháng 4 2019 lúc 20:50

a= [n(n+3][(n+1)(n+2)]+1

a=[n^2+3n][n^2+3n+2]+1

ĐẶt n^2+3n+1=b( b thuộc Z)

=> a=(b-1)(b+1)+1

=> a=b^2-1+1

=> a=b^2

=> a=(n^2+3n+1)^2

Mà n là số tự nhiên =>  n^2+3n+1 là số nguyên => a là số chính phương

T i ck nha

Bình luận (0)
GL
11 tháng 4 2019 lúc 20:51

a=n(n+1)(n+2)(n+3)+1

=(n2+3n)(n2+3n+2)+1

Đặt n2+3n+1=m(m thuộc N*)

=>a= (m-1)(m+1)+1=m2

Vậy...................

Bình luận (0)
ZZ
11 tháng 4 2019 lúc 21:41

Ta có:\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt  \(n^2+3n=t\) khi đó ta có:

\(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là số chính phương

Bình luận (0)
QD
Xem chi tiết
VA
28 tháng 1 2021 lúc 22:20

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

Bình luận (0)
 Khách vãng lai đã xóa
KL
Xem chi tiết
VA
28 tháng 1 2021 lúc 22:20

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NQ
22 tháng 1 2018 lúc 22:09

A = [n.(n+3)] . [(n+1).(n+2)]

   = (n^2+3n).(n^2+3n+2) > (n^2+3n)^2    (1)

Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2    (2)

Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2

=> A ko phải là số chính phương

Tk mk nha

Bình luận (0)
BR
Xem chi tiết
DH
3 tháng 9 2017 lúc 9:14

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)

là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)

Bình luận (0)
00
9 tháng 4 2018 lúc 19:54

A = n n + 1 n + 2 n + 3

= n n + 3 n + 1 n + 2

= n 2 + 3n n 2 + 3n + 2

= n 2 + 3n 2 − 2 n 2 + 3n

= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm) 

Bình luận (0)
KT
Xem chi tiết
TL
2 tháng 5 2020 lúc 6:32

Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9

Giả sử n2+n+1 chia hết cho 9

<=> n2+n+1=9k (k thuộc N)

<=> n2+n+1-9k=0 (1)

\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)

Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên

Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa