Tìm 2 số tự nhiên biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6
Bài 1:Tìm hai số tự nhiên.Biết rằng tổng của chúng bằng 66,ước chung lớn nhất của chúng bằng 6,đồng thời có một số chia hết cho 5.
Bài 2:Tìm hai số tự nhiên ,biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12.
Bài 3:Tìm hai số tự nhiên,biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6.
tìm hai số tự nhiên biết tích của chúng bằng 864 và ước chung lớn nhất bằng 6
Gọi 2 số cần tìm là a, b (a>b)
Vì ƯCLN(a,b)=6
=> \(a=6m\)
\(b=6n\)
( ƯCLN(m,n) =1 và m>n)
=> \(a\times b=6m\times6n=36mn\)
=> \(mn=864\div36\)
=> \(mn=24\)
Ta có
Cặp số: \(m=8\) => \(a=8\times6=48\)
\(n=3\) => \(b=3\times6=18\)
Vậy 2 số cần tìm là 48, 18
\(UCLN\left(a;b\right).BCNN\left(a;b\right)=ab\)
mà \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=6\\a.b=864\end{matrix}\right.\)
\(\Rightarrow BCNN\left(a;b\right)=144\)
Vậy \(\left(a;b\right)\in\left\{\left(144;6\right)\right\}\)
2 số cần tìm là 48, 18 nha bạn
chúc bạn hok tốt
Tìm hai số tự nhiên biết tích của chúng là 864 và ước chung lớn nhất của chúng là 6
Gọi 2 số cần tìm là a và b
Do ƯCLN(a, b) = 6 => a = 6.m; b = 6.n (m,n)=1
Ta có: 6.m.6.n = 864
=> m.n.36 = 864
=> m.n = 24
Giả sử a > b => m > n mà (m, n)=1
=> m = 24; n = 1 hoặc m = 8; n = 3
+ Với m = 24; n = 1 thì a = 6 × 24 = 144; b = 6 x 1 = 6
+ Với m = 8; n = 3 thì a = 6 × 8 = 48; n = 6 × 3 = 18
Vậy các cặp số thỏa mãn đề bài là: (144; 6) ; (48; 18)
Gọi 2 số cần tìm là a,b (a,b \(\in\text{N}\))
UCLN(a,b) = 6 \(\Rightarrow\)\(\hept{\begin{cases}\text{a=6p}\\\text{b = 6q}\end{cases}}\)
Tìm hai số tự nhiên m và n(16<m<n) có tích bằng
Tìm hai số tự nhiên biết tích của chúng là 864 và ước chung lớn nhất của chúng là 6
Gọi 2 số cần tìm là a và b.
Theo đề bài ta có:
a.b=864.
Ước chung lớn nhất của a và b là 6 nên:
a=6.k;b=6.p
36.k.p=864
k.p=24.
Theo mình để ước chung lớn nhất là 6 thì k(giả sử) lẻ..
Vậy a thuộc 6;18.
b thuộc 144;48.
Chúc học tốt^^
tìm 2 số tự nhiên biết rằng tích của chúng là 864 và uwcln là 6
1: Tìm 2 số tự nhiên biết tổng của chúng là 144 và ước chung lớn nhất bằng 8 ?
2: Tìm 2 số tự nhiên biết tích của chúng là 1286 và ước chung lớn nhất bằng 9 ?
Tìm 2 số tự nhiên biết tổng của chúng là 864, ước chung lớn nhất của chúng là 6
tìm 2 số tự nhiên biết tích của chúng bằng 84 và ước chung lớn nhất bằng 6
mk biết kết quả nhưng ko biết trình bày thế nào
bài 1) tìm 2 số tự nhiên biết rằng tổng của chung là 66, ước chung lớn nhất của chúng là 6, đồng thời có 1 số chia hết cho 5
bài 2) tìm 2 số tự nhiên biết hiệu của chúng bằng là 84 và ước chung lớn nhất của chúng là 12
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Đính chính câu 2 \(a-b=84\) không phải \(a-b=66\)
Tìm hai số tự nhiên biết tích của chúng bằng 432 và ước chung lớn nhất bằng 6
Gọi hai số tự nhiên cần tìm là a, b. Thì (a,b) = 6 và a.b = 432. Ta đã biết (a,b).[a,b] = a.b. Vậy 6.[a,b] = 432, Do đó BCNN của hai số đó là: [a,b] = 432 : 6 = 72. Hai số cần tìm là a = 72 và b = 6. Một số là BCNN của hai số và số bé là UCLN của chúng.