Những câu hỏi liên quan
VK
Xem chi tiết
TL
Xem chi tiết
CK
Xem chi tiết
LF
6 tháng 12 2016 lúc 22:11

b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)

Với n=1 (*) đúng

Giả sử (*) đúng với n=k, khi đó ta có

\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)

Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Theo nguyên lí quy nạp ta có ĐPCM

Áp dụng vào bài toán ta có:

\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)

 

Bình luận (3)
LF
6 tháng 12 2016 lúc 22:02

a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)

\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)

 

Bình luận (1)
LF
6 tháng 12 2016 lúc 22:12

câu c thì vừa này t vào xem phần hỏi đáp trang toán có bài đăng r` đấy quay lại xem

Bình luận (1)
H24
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
TC
Xem chi tiết
TH
Xem chi tiết
NN
13 tháng 6 2016 lúc 16:55

1

Bình luận (0)
NN
13 tháng 6 2016 lúc 16:57

no

Bình luận (0)
TA
11 tháng 12 2016 lúc 7:50

CÂU A NHÂN A VS 3 RỒI TRỪ ĐI A RỒI LẤY 1 SỐ NHÂN VS 1 TỔNG

CÂU B , C DỰA VÀO CÂU A

CHÚC BN THÀNH CÔNG !!

Bình luận (0)
TL
Xem chi tiết