cho 3 số nguyên a; b; c thỏa mãn: k=(a-b)(b-c)(c-a). Chứng minh rằng:(a-b)^3+(b-a)^3+(c-a)^3 chia hết cho 3k
bài này hơi tốn IQ 1 chút ai giỏi jup mik nha
Câu 1 : Tìm a,b,c là số nguyên tố sao cho : a^b+b^a=c
Câu 2 : Tìm p là số nguyên tố sao cho : p^2+2 là số nguyên tố
Câu 3 : Cho p;p^2+2 là số nguyên tố.Chứng minh rằng : a^3+a là số nguyên tố
a) Tìm các số nguyên dương a sao cho a = 10 ; a = 1 ; a = 4 ; a = − 2
b) Tìm các số nguyên âm a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
c) Tìm các số nguyên a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
A=\(\dfrac{4}{x-3}\)
a/ tìm số nguyên x sao cho A có giá trị là số chính phương
b/tìm số nguyên x sao cho A có giá trị là số nguyên tố
b)
Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó
\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)
Giải:
a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 4 |
x | 4 | 7 |
Vậy \(x\in\left\{4;7\right\}\)
b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\)
\(4⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta thấy:
Vì chỉ có mỗi 2 là số nguyên tố nên ta có:
x-3=2
x=5
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
1/ Tìm số nguyên n sao cho n + 2 chia hết cho n -3
2/ Tìm tất cả các số nguyên a biết: (6a +1) chia hết cho ( 3a -1)
3/ tìm 2 số nguyên a , b biết :a > 0 và a. (b - 2) =3
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
a) Cho n là số nguyên tố không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3. Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Cho 3 số nguyên a,b,c sao cho a-b+2019,b-c+2019,c-a+2019 là các số nguyên liên tiếp Tìm 3 số a,b,c
\(a-b+2019;b-c+2019;c-a+2019\text{ là 3 số nguyên liên tiếp}\)
\(\Rightarrow a-b;b-c;c-a\text{ là 3 số nguyên liên tiếp mà:}\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)
\(\text{nên:}a-b=-1;b-c=0;c-a=1\Rightarrow b=c=a+1\)
Cho các số nguyên a> b> 0 và p là số nguyên tố (p> 3) sao cho p² là ước của a³ - b³. Chứng minh rằng p <a√3.
B1:Cho p là số nguyên tố >3.Chứng minh rằng (p-1)(p+4) chia hết cho 6
B2:Chứng minh rằng chỉ có duy nhất 1 bộ 3 số nguyên tố mà hiệu của 2 số liên tiếp =4
B3:Tìm số nguyên tố <200, biết rằng khi chia nó cho 60 thì số dư là hợp số
B4: Tìm các số nguyên tố a,b,c biết 2a+6b+21c=78
B5:Tìm 3 số nguyên tố liên tiếp a,b,c (a<b<c) sao cho A=a^2+b^2+c^2 cũng là số nguyên tố
Giúp mình với, mình sẽ tick cho