cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và\(a+b+c\ne0\)tính \(\frac{a^{2010}.c^5}{b^{2015}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0;a=2015\)
Tính b,c
-Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=>\(\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(a=b;b=c;c=a\)
\(a=b=c\)
-Mà \(a=2015\)
-Nên\(b=c=2015\)
Biết : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a\ne0;b\ne0;c\ne0\right)\)
Tính giá trị biểu thức :\(\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}\)
Biết \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và \(a\ne0;b\ne0;c\ne0;a+b+c\ne0\)
Tính \(A=\frac{a^{670}\cdot b^{672}\cdot c^{673}}{a^{2015}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có:
\(A=\frac{a^{670}b^{672}c^{673}}{a^{2015}}=\frac{a^{670}a^{672}a^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)
Vậy \(A=1\)
Áp dụng t/c' dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{a}=1\Rightarrow c=a\) (3)
Từ (1);(2);(3) \(\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}=\frac{a^{670}.a^{672}.a^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)
\(\Rightarrow A=1\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh::\(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)với \(b,d\ne0,c\ne d\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\). Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Mặt khác: \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}\ne\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Do vậy không thể chứng minh được đề bài. Suy ra: Đề sai!!!!
Do một số bạn phản ánh về lời giải của mình nên mình quyết định giải lại nhằm bảo vệ danh dự của mình =)))
Giải
Theo giả thiết, áp dụng tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số bằng nhau ,ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a-b}{c-d}\right)^{2015}\) (1)
Mặt khác, áp dụng tính chất dãy tỉ số bằng nhau lần nữa ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\\\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\end{cases}\Leftrightarrow\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}^{\left(đpcm\right)}}\)
Có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)( tính chất tỉ lệ thức )
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Vậy .......
Bạn tth làm dài dòng quá, mình sẽ rút ngắn lại cho bạn nha!
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)và a + b + c \(\ne0\)
Tính giá trị của biểu thức M = \(\frac{a^{2012}b^2c}{c^{2015}}\)
Giúp Mình vs nhé @
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
1. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0;a=2003\) . Tính b,c
2. CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0\). Tính \(M=\frac{a^3b^2c^{1930}}{b^{1935}}\)
Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))
1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)
Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)
Cho \(abc\ne0\) và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=1\)
\(\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)( 1 )
\(\frac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)( 2 )
\(\frac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=2.2.2=8\)
bạn cần gấp ko mình bt làm nè
cho \(a,b,c\ne0\)và \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)
tính Gtrị \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Ta có:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)
\(\Rightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(a+c\right)}{a+c}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)