Những câu hỏi liên quan
NP
Xem chi tiết
H24
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Bình luận (0)
H24
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

Bình luận (0)
NP
3 tháng 12 2018 lúc 0:03

Thanks. <3

Bình luận (0)
VA
Xem chi tiết
LS
Xem chi tiết
CD
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

Bình luận (0)
H24
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
LS
Xem chi tiết
MR
Xem chi tiết
H24
5 tháng 8 2016 lúc 1:15

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)

Bình luận (0)
MR
6 tháng 8 2016 lúc 20:44

Có bạn nào có cách giải dễ hiểu hơn không? Giúp mình với!!!

Bình luận (0)
AD
24 tháng 11 2017 lúc 21:13

bđt cô-si đó bạn :)) 

Bình luận (0)
CR
Xem chi tiết
NQ
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Bình luận (0)
CR
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

Bình luận (0)
NK
Xem chi tiết
DH
13 tháng 9 2017 lúc 20:18

\(A=\frac{x^2+2x+3}{x^2+2}\)

\(\Leftrightarrow Ax^2+2A=x^2+2x+3\)

\(\Leftrightarrow Ax^2+2A-x^2-2x-3=0\)

\(\Leftrightarrow x^2\left(A-1\right)-2x+\left(2A-3\right)=0\)

Để pt trên có nghiệm thì \(\Delta=4-4\left(A-1\right)\left(2A-3\right)\ge0\)

\(\Leftrightarrow1-\left(2A^2-5A+3\right)\ge0\Leftrightarrow-2A^2+5A-2\ge0\)

\(\Leftrightarrow\left(1-2A\right)\left(A-2\right)\ge0\Leftrightarrow\frac{1}{2}\le A\le2\)

Vậy A có GTNN là \(\frac{1}{2}\) tại x = - 2

     A có GTLN là 2 tại x = 1

Bình luận (0)
OK
13 tháng 12 2018 lúc 19:31

min A=2 khi x=1

_____________
_______________
nha

Bình luận (0)
BP
Xem chi tiết