CM : A=1/1.3 + 1/3.54 + ... + 1/(2n-1)(2n+1) < 1/2
CM A=1/1.3+1/3.5+...+1/(2n-1)(2n+1)<1/2
2A = 2/1.3+2/3.5+....+2/(2n-1).(2n+1)
= 1-1/3+1/3-1/5+.....+1/2n-1 - 1/2n+1
= 1-1/2n+1 < 1
=> A < 1/2
=> ĐPCM
k mk nha
5. Cho a,bc >0 thỏa mãn abc=1
Cm: (a+1).(b+1).(c+1) > hoặc bằng 8
6. Cm
1/1.3 + 1/3.5 + 1/5.7 +...+ 1/ (2n-1).(2n+1)< 1/2
ta có (a-1)2 ≥ 0 ∀a
<=> a2-2a+1 ≥ 0
<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)
<=> a2+2a+1 ≥ 4a
<=> (a+1)2 ≥ 4a
CM tương tự ta đc
(b+1)2 ≥ 4b
(c+1)2 ≥ 4c
Nhân các vế với nhau ta có
[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)
<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)
a)Tính: 1/1.3 + 1/3.5 + 1/5.7 +...+1/19.21
b) chúng minh: A= 1/1.3 + 1/3.5 +...+ 1/(2n-1)(2n+1) < 1/2
a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21
Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21
= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21
= 1-1/21 = 20/21
=> B= 20/21 : 2 => B= 10/21
b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2
=> A= 1/2- 1/2n+1
=> A< 1/2 ( đpcm )
(1^2/1.3)+(2^2/3.5)+....+(n^2/(2n-1)(2n+1))=(n(n+1))/((2n-1)(2n+1))
Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)
Rút gọn :\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}+\frac{1}{2n\left(2n+2\right)}\)
tự làm là hạnh phúc của mỗi công dân.
1^2/2^2-1.3^2/4^2-1....(2n+1)^2/(2n+2)^2-1
Chứng minh \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}< \dfrac{1}{2}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(=1-\dfrac{1}{2n+1}\Rightarrow A=\left(1-\dfrac{1}{2n+1}\right)\cdot\dfrac{1}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2n+1}< \dfrac{1}{2}\)
Vậy A < \(\dfrac{1}{2}\)
a,tính \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
b,CMR A\(=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{(2n-1).(2n+1)}\le\frac{1}{2}\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
Chứng minh rằng :
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/(2n-1)(2n+1) < 1/2
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
=\(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
=\(\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
=\(\dfrac{1}{2}-\dfrac{1}{4n+2}< \dfrac{1}{2}\)
đặt A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
=> 2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
<=> 2A=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}+.....+\dfrac{1}{2n-2}-\dfrac{1}{2n+1}\)
<=>2A=\(1-\dfrac{1}{2n+1}\)
<=> A=\(\left(1-\dfrac{1}{2n+1}\right)\)\(.\dfrac{1}{2}\)
<=> A=\(\dfrac{1}{2}-\dfrac{1}{2\left(2n+1\right)}\)
=>\(A< \dfrac{1}{2}\) (đpcm)