Chứng minh rằng với x ≥ 1; x ∈ N thì:
\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
1. Với x, y là những số nguyên. Chứng minh rằng (p+1)(q+1) chia hết cho 4.
2. Với x, y là những số nguyên. Chứng minh rằng (x^2+x)(x+2) - 15y chia hết cho 3.
2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)
Vì \(x\), \(x+1\)và \(x+2\)là 3 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)
mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)
hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )
Mình cảm ơn ạ !!!
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)
Chứng minh rằng :
B= x( x+1 )( 2x+1 ) : 3 với x ϵ N
phân tích ra ta có (x2+x)(2x+1)
=>2x3+x2+2x2+x
=>2x^2(x+1)+x(x+1)
=>(x+1)(2x+x)
=>(x+1).x.3
=>chia hết cho 3 :-)
Chứng minh rằng :
B= x( x+1 )( 2x+1 ) ⋮ 3 với x ϵ N
Lời giải:
Nếu $x$ chia hết cho $3$ thì hiển nhiên $B=x(x+1)(2x+1)\vdots 3$
Nếu $x$ chia $3$ dư $1$ thì đặt $x=3k+1$ với $k\in\mathbb{N}$
$2x+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow B=x(x+1)(2x+1)\vdots 3$
Nếu $x$ chia $3$ dư $2$ thì đặt $x=3k+2$ với $k\in\mathbb{N}$
$x+1=3k+2+1=3(k+1)\vdots 3$
$\Rightarrow B=x(x+1)(2x+1)\vdots 3$
Vậy $B=x(x+1)(2x+1)\vdots 3$ với mọi $x\in\mathbb{N}$
Chứng minh rằng :
B= x( x+1 )( 2x+1 ) ⋮ 3 với x ϵ N
B = 2x(x+1)(x+2) - 3x(x+1)
Do x tự nhiên nên x,x+1,x+2 là 3 số tự nhiên liên tiếp.
--> 2x(x+1)(x+2) chia hết cho 3
Mà 3x(x+1) chia hết cho 3
--> B chia hết cho 3
chứng minh rằng:
A\(=x^2+x+1>0\) với mọi x
\(A=x^2+x+1\)
\(A=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
mà \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>\dfrac{3}{4}>0\) với mọi x
\(\Rightarrow Dpcm\)
a,Cho đa thức f(x)=ax+b (a khác 0). Biết f(0)=0, chứng minh rằng F(x)=-f(-x)với mọi x
b,Đa thức f(x)=ax^2=bx+c (a khác 0).Biết F(1)=F(-1), chứng minh rằng f(x) với mọi x
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2