Những câu hỏi liên quan
KK
Xem chi tiết
TL
Xem chi tiết
AH
29 tháng 7 2021 lúc 23:42

Lời giải:

Bổ sung điều kiện $n$ là số tự nhiên khác $0$

Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)

\(4^{3^{4n+1}}\equiv 0\pmod 4\)

\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)

Vậy $A\vdots 4(*)$

Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$ 

$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$

$3^{4n+1}=3.81^n\equiv 3\pmod {10}$

$\Rightarrow 3^{4n+1}=10t+3$

$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$

Do đó:

$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$

Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$

Ta có đpcm.

 

Bình luận (1)
TC
29 tháng 7 2021 lúc 22:27

Bạn có thể gõ lại công thức rõ hơn được không?

Bình luận (1)
PD
Xem chi tiết
NB
21 tháng 4 2020 lúc 9:09

thám tử lưng danh conan à   

Bình luận (0)
 Khách vãng lai đã xóa
KK
Xem chi tiết
MT
Xem chi tiết
PH
Xem chi tiết
HL
Xem chi tiết
BP
Xem chi tiết
BP
18 tháng 10 2020 lúc 19:58

Trả lời giúp mình k cho!

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
YN
15 tháng 5 2021 lúc 20:06

Bài 2:

\(\left(2n+3\right)^2-9\)

\(\rightarrow4n^2+12n+9-9\)

\(\rightarrow4n^2=12n\)

\(\rightarrow4n.\left(n+3\right)\)

\(\rightarrow4⋮4\)

\(\rightarrow4n⋮4\)

\(\rightarrow4n.\left(n+3\right)⋮4\)

\(\rightarrow\left(2n+3\right)^2-9⋮4\)

Bình luận (0)
 Khách vãng lai đã xóa