Chứng tỏ rằng :
a, 10^33 + 8 chia hết cho 18
b, 10^10 + 14 chia hết cho 6
chứng tỏ rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
Chứng tỏ rằng:
A 1033 +8 chia hết cho 18
B 1010+14 chia hết cho 6
Chứng minh rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
a)Các số tự nhiên chia hết cho 9 là :450;405;540;504
b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534
1.53. Chứng tỏ rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
1.54. Chứng tỏ rằng với mọi số tự nhiên n, tích (n+7) (n+8) luôn chia hết cho 2
1.55. Chứng tỏ rằng tích của 3 số tụ nhiên chắn liên tiêp chia hết cho 48
1.56. Cho n \(\in\)N*. Chứng tỏ rằng:
a (5^n - 1) \(⋮\)4
b) ( 10^n + 18n - 1) \(⋮\)27
1.57. Tìm số tự nhiên có 5 chữ số, các chữ số giống nhau, biết rắng số đó chia cho 5 dư 1 và chia hết cho 2
3) Chứng tỏ
a) 10^33 + 8 chia hết cho 2 và 9
b) 10^10 + 14 chia hết cho 3 và 2
a)
10^33 có dạng 10...00
=> 10^33 + 8 có dạng 10...08 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 8 = 9 chia hết cho 9 ( đpcm )
b)
10^10 có dạng 10...00
=> 10^10 + 14 có dạng 10...14 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 1 + 4 = 6 chia hết cho 3 ( đpcm )
10^33 có dạng 10...00
=> 10^33 + 8 có dạng 10...08 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 8 = 9 chia hết cho 9 ( đpcm )
b)
10^10 có dạng 10...00
=> 10^10 + 14 có dạng 10...14 chia hết cho 2 ( đpcm )
=> tổng các chữ số của nó là : 1 + 1 + 4 = 6 chia hết cho 3
a.
Ta có : 1033 được viết dưới dạng sau : 10...00
=> 10..00 + 8 \(⋮\)2 ( đpcm )
=> Tổng của 10..00 + 8 = 1 + 8 = 9 \(⋮\)9 ( đpcm )
b.
Ta có : 1010 được viết dưới dạng sau : 10 ..00
=> Tổng của 10..00 + 14 là : 1 + 1 + 4 = 6 \(⋮\)3( đpcm )
=> 10..00 + 14 \(⋮\)2 ( đpcm )
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
b, 1033 +14 chia hết cho 3 và chia hết cho2
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
Vì 10 chia hết cho 2 và 8 chia hết cho 2
=> 1033 + 8 chia hết cho 2
b, 1033 +14 ko chia hết cho 3 và chỉ chia hết cho 2
chứng minh
10^33 + 8 chia hết cho 18
10^10 + 14 chia hết cho 6
Câu 1:
\(10^{33}=1000...000\) (có 33 chữ số 0)
\(10^{33}=1000...008\) (có 32 chữ số 0)
\(10^{33}+8\) có chữ số tận cùng là 8 là số chẵn => chia hết co 2
\(10^{33}+8\) có tổng các chữ số = 1+8=9 => chia hết cho 9
2 và 9 là số nguyên tố cùng nhau => \(10^{33}+8\) đồng thời chia hết cho cả 2 và 9 mà 18=2.9 => \(10^{33}+8\) chia hết cho 18
Bài 2: làm tương tự
Bài 2: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 3: Chứng minh rằng: n3+5n chia hết cho 6
Bài 4: Chứng minh rằng: (n+20122013).(n+20132012) chia hết cho 2
Bài 5: Chứng tỏ rằng
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé.