cho y>x>0 và \(\frac{x^2+y^2}{x.y}=\frac{10}{3}\)Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
Cho x < y < 0 và \(\frac{x^2+y^2}{x.y}=\frac{25}{12}\)
Tính giá trị của biểu thức : \(P=\frac{x-y}{x+y}\)
\(\Leftrightarrow\hept{\begin{cases}3\left(x^2+y^2\right)=10xy\left(1\right)\\x< y< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}xy>0\\x-y>0\\x+y< 0\end{cases}}\) \(\Rightarrow P< 0\)(*)
\(\left(1\right)\Rightarrow\hept{\begin{cases}3\left(x-y\right)^2=4xy\left(2\right)\\3\left(x+y\right)^2=16xy\left(3\right)\end{cases}}\)
\(\frac{\left(1\right)}{\left(2\right)}=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{1}{4}\Rightarrow\orbr{\begin{cases}\frac{x-y}{x+y}=\frac{1}{2}\\\frac{x-y}{x+y}=-\frac{1}{2}\end{cases}}\)
Từ (*)=> P=-1/2
Tính giá trị của biểu thức:
B=\(\frac{2.x-y}{3.x-y}-\frac{x-5.y}{3.x+y}\)
Với y khác 3,-3 và \(6.x^2-15.x.y+5.y^2=0\)
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)
\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)
Vậy M=\(\frac{1}{4}\)
Cho x,y,z là ba số khác 0 thỏa mãn \(\frac{x.y}{x+y}+\frac{y.z}{y+z}+\frac{z.x}{z+x}\) ( với giả thiết các tỉ số có nghĩa). Tính giá trị biểu thức:
\(M=\frac{2020.x^2.y+2020.y^2.z+2020.z^2.x}{x^3+y^3+z^3}+\frac{2021.x^4.y+2021.y^4.z}{x^5+y^5}\)
giúp mình với mình đang cần gấp Pleaseeee :(
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Tính giá trị biểu thức: \(S=\frac{x^{2+3.x.y+y^2}}{x^2-xy-y^2}\)
Với : \(\frac{x}{2}=\frac{y}{3}\)và \(y\ne0\)
giúp mình với, trình bày đầy đủ nhé các bạn, nhanh nhất mình tik cho :D
Tính giá trị của biểu thức sau:
\(B=\frac{5b+12}{5a-43}+\frac{23-2.a}{1-2b}vớia-b=11\&a\ne\frac{43}{5},b\ne\frac{1}{2}\)
\(C=\frac{0,75.x^2-y^2}{3.x^2+9.y^2}+\frac{6.x+y}{8.x-2.y}với\frac{x}{y}=-2\)
\(D=4.x^2-5.x.y+3.y^2với|x|=1,|y|=2\)
\(E=x^4-x^3.y+3.x^3+x^2.y^2-x.y^3-3.x.y^2-x.\left(x-y\right)-3.x+7vi-y+3=0\)
\(F=x^3+2.x^2.y-2.x^2+x.y^2-2.x.y+2.x+2.y-2vớix+y-2=0\)
Thanks ^^
a, Cho x3+y3+3(x2+y2)+4(x+y)+4=0 và x.y>0
Tìm giá trị lớn nhất biểu thức: M = \(\frac{1}{x}+\frac{1}{y}\)
b, Cho các số x, y, z thỏa mãn điều kiện: y2 + z2 + yz = 1 - \(\frac{3}{2}x^2\)
Tìm giá trị lớn nhất và nhỏ nhất của P = x + y + z
c, Cho ba số dương x, y, z thoả mãn điều kiện: \(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
cho x ,y,z khác 0 thỏa mãn x+y+z=0 Tính giá trị của biểu thức M=\(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
thay z = -(x+y) , y = -(z+x),... vao
=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0
Cho x, y, z khác 0 và x + y + z = 0. Tính giá trị của biểu thức:
\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
\(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)
\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)