15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.
15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
cho n là STN. Chứng minh rằng:
a, (n+10) (n+15) chia hết cho 2
b, n (n+1)(n+2) chia hết cho 2 và cho 3
c, n (n+1)(2n+1) chia hết cho 2 và cho 3
mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi
Bài này mik cũng làm nhiều rùi nè
a, nếu n chẵn thì n+10 chẵn nên (n+10)(n+15) chẵn nên chia hết cho 2
b,vì n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên tồn tại 1 số chia hết cho 2 và một số chia hết cho 3
vậy n(n+1)(n+2) chia hết cho 2 và 3
c, Ta có n(n+1)(2n+1) luôn chia hết cho 2 vối mọi n thuộc N ( tự CM như câu a)
n(n+1)(2n+1) luôn chia hết cho 3 với mọi n thuộc N
Vậy..
Bài 1 : Chứng minh a + 2b chia hết cho 3 khi và chỉ khi b + 2a cũng chia hết cho 3
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta có :
a, ( n + 10 ) ( n + 15 ) chia hết cho 2
b, n^3 + 5n chia hết cho 6
c, ( 3^100 + 19^990 ) chia hết cho 2
d, ( 3^1993 - 2^157 ) không chia hết cho 2
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
bài 2
a, ta có 2 TH:
+)n là số chẵn =>n+10 chia hết cho 2
+)n là số lẻ =>n+15 chia hết cho 2
Cho n là số tự nhiên .Chứng minh rằng:
a) (n+10) (n+15) chia hết cho 2
b) n(n+1) (n+2) chia hết cho 2 và 3
c) n(n+1) (2n+1) chia hết cho 2 và 3
a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.
c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2
Cho n \(\inℕ\). Chứng minh rằng :
a) ( n + 10 ) ( n + 15 ) chia hết cho 2
b) n ( n + 1 ) ( n + 2 ) chia hết cho 2 và cho 3
c) n ( n + 1 ) ( 2n + 1 ) chia hết cho 2 và cho 3
a) vì n thuộc N, ta có:
TH1: n là số lẻ
=> n+15 là số chẵn => n+15 chia hết cho 2=> (n+10).(n+15) chia hết cho 2
TH2: n là số chẵn
=> n+10 là số chẵn=> n+10 chia hết cho 2=> (n+10).(n+15) chia hết cho 2
Vậy với mọi n thuộc N => (n+10).(n+15) chia hết cho 2
b) vì n thuộc N
=> n, n+1, n+2 là 3 số tự nhiên liên tiếp => một trong ba số chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3
xét TH1: n là số lẻ
=> n+1 là số chẵn => n+1 chia hết cho 2=>n.(n+1).(n+2) chia hết cho 2
xét TH2: n là số chẵn
=> n+2 và n là số chẵn => n chia hết cho 2, n+2 chia hết cho 2=>n.(n+1).(n+2) chia hết cho 2
vậy với mọi n thuộc N thì n.(n+1).(n+2) chia hết cho 2,3
a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n có cơ số 2 nên chia hết cho 2.
c, n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2