Những câu hỏi liên quan
TL
Xem chi tiết
TL
Xem chi tiết
ML
29 tháng 6 2015 lúc 20:42

\(a\text{)}\)

\(A=x^2+4x-5=\left(x-1\right)\left(x+5\right)\)

\(\text{Nếu }x\text{ là số tự nhiên lẻ thì }x=2n+1\text{ (}n\in N\text{ )}\)
\(\text{Khi đó: }A=\left(2n+1-1\right)\left(2n+1+5\right)=2n.\left(2n+6\right)=4n\left(n+3\right)\)

\(n\text{ chẵn thì }n\left(n+3\right)\text{ chẵn }\Rightarrow n\left(n+3\right)\text{chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)

\(n\text{ lẻ thì }n+3\text{ chẵn }\Rightarrow n\left(n+3\right)\text{ chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)

Ta có đpcm.

\(\text{b)}\)

\(x^2+65=y^2\)\(\Rightarrow y^2-x^2=65\Leftrightarrow\left(y+x\right)\left(y-x\right)=65.1=13.5\)

\(\text{Do }x,y\text{ nguyên nên }y+x;y-x\text{ nguyên}\)

\(\text{Mà }y+x>y-x>0\text{ nên ta có:}\)

\(\text{+TH1: }y+x=65\text{ và }y-x=1\Leftrightarrow x=32;y=33\)

\(\text{+TH2:}y+x=13\text{ và }y-x=5\Leftrightarrow x=4;y=9\)

\(\text{Vậy }x\in\left\{4;32\right\}\text{ thì }x^2+65\text{ là số chính phương.}\)

 

Bình luận (0)
NX
Xem chi tiết
DK
Xem chi tiết
MW
24 tháng 3 2021 lúc 18:10

Giả sử \(^{2^x+1=a^2}\), ta có:

<=> \(2^x=a^2-1\)

<=>\(2^x=a^2-a+a-1\)

<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)

<=>\(2^x=\left(a-1\right)\left(a+1\right)\)

=>

\(a-1=2^y\)<=>\(a=2^y+1\)\(a+1=2^z\)<=>\(a=2^z-1\)

(x=y+z)

=> \(2^y+1=2^z-1\)

<=>\(2^z-2^y=2\)

<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)

<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)

Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:

\(2^{y-1}=1\)<=> y-1 = 0 <=> y=1\(2^{z-1}=2\)<=> z-1 = 1 <=> z=2

=> x = y+z = 1+2 = 3.

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
TL
27 tháng 7 2015 lúc 22:44

2x +1 là số lẻ nên (2x+1)là số chính phương lẻ 

120 < (2x+1)2 < 200 => (2x+1)= 121 ; 169

+) (2x+1)= 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6

+) (2x+1)= 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7

Vậy....

Bình luận (0)
TP
1 tháng 1 2016 lúc 17:47

nswfhceqohvewoi

 

Bình luận (0)
DH
Xem chi tiết
YN
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
NM
2 tháng 1 2016 lúc 11:07

đúng nhưng bài làm . tick cho tớ nhé tớ là bai chứng minh của cậu rồi

Bình luận (0)
NM
Xem chi tiết
NN
Xem chi tiết