Giải phương trình nghiệm nguyên : \(9x+2=y^2+y\)
Giải phương trình nghiệm nguyên sau:
9x + 2 = y2 + y
https://olm.vn/hoi-dap/detail/245049015319.html?pos=572115847211
a,giải phương trình nghiệm nguyên
x2(y-1)+y2(x-1)=1
b, tìm tất cả nghiệm nguyên của pt
3x-16y-24=\(\sqrt{9x^2+16x+32}\)
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
Tìm nghiệm nguyên của phương trình:
9x + 2 = y2 + y
https://olm.vn/hoi-dap/detail/245049015319.html?pos=572115847211
Tìm các nghiệm nguyên của phương trình
\(9x+2=y^2+y\)
Biến đổi phương trình :\(9x+2=y.\left(y+1\right)\)
Ta thấy vế trái của phương trình là số chia cho \(3\) dư \(2\) nên \(y.\left(y+1\right)\) chia cho \(3\) dư \(2\)
Chỉ có thể :\(y=3k+1;y+1=3k+2\) với k là số nguyên
Khi đó:\(9x+2=\left(3k+1\right).\left(3k+2\right)\)
\(\iff\) \(9x=9k.\left(k+1\right)\)
\(\iff\) \(x=k.\left(k+1\right)\)
Thử lại ,\(x=k.\left(k+1\right);y=3k+1\) thỏa mãn phương trình đã cho
Vậy \(\hept{\begin{cases}x=k.\left(k+1\right)\\y=3k+1\end{cases}}\) với k là số nguyên tùy ý
Giải các phương trình sau:
a, \(9x^2+y^2=18x+6y-18\)
b, \(y^3=x^3+x^2+x+1\) với nghiệm nguyên
a/ \(9x^2+y^2=18x+6y-18\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
a) \(9x^2+y^2=18x+6y-18\)
\(\Rightarrow9x^2+y^2-18x-6y+9=0\)
\(\Rightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)
Mà \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)
Vậy ....................
Câu b để mik nghĩ tiếp
b/ Ta có:
\(x^3< y^3=x^3+x^2+x+1< \left(x+2\right)^3\)
\(\Rightarrow x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}\)
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Giải phương trình nghiệm nguyên 1/x + 1/y = 1/2
Giải phương trình x^2+1/x^2 ++ 1/y^2 + y^2 = 4
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
Giải phương trình nghiệm nguyên:( x 2) (x-2)-y=y^2-4
ta có đc :
x2-4-y=y2-4
<=> x2=y2+y
<=> x2=y(y+1)
vì VP là tích của 2 số nguyên liên tiếp và VT là bình phương một số và x và y nguyên => x2=y(y+1)=0
<=> y=0 hoặc y=-1
vậy ta có cặp no(x;y):(0;0) ; (0;-1)
Giải phương trình nghiệm nguyên: (3x + 2y)(2x - y)2 = 7(x + y) -2