S=5+52+....+596
a)Tìm S
b)chứng minh S chia hết cho 126
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Cho S=1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
2) S= 5+5^2+5^3+5^4+...+5^96
a) Chứng minh S chia hết cho 126
b) Tìm chữ số tận cùng của S
- Giải giùm mình nha!
bài 1;chứng minh S=5+5^2+.....+5^98 chia hết cho 126
tìm chữ số tcùng cuả S
baif2 chứng minh S= 1+ 3+3^2+.....+3^99 chia hết cho 40
mình cần gấp quá thôi, mình k cho!!!!!!!!!!!!!
S tận cùng =0 nha bạn mình tính rồi đó lúc nãy mình bị lộn
bài 2 có cần tìm tận cung ko bạn
Cho S=5+5^2+5^3+.....+5^2004. Chứng minh S chia hết cho 126 và chia hết cho 65
Số số hạng của dãy S là :(2004-1):1+1=2004
Ta chia 2004 số hạng thành 501 nhóm mỗi nhóm 4 số và đătj thừa số chung như sau:
(5+5^2+5^3+5^4)+........+(5^2001+5^2002+5^2003+5^2004)
=> (5+5^2+5^3+5^4)+........+5^2001*(5+5^2+5^3+5^4)
=>780+..........+5^2001*780
=780*(1+.........+5^2001)
Vì 780 chia hết cho 65
vậy S chia hết cho 65
Cho S = 5 + 5^2 + 5^3 + ... + 5^2008.
a, Chứng minh rằng S chia hết cho 126.
b, Tìm chữ số tận cùng của S
\(S=5+5^2+5^3+...+5^{2008}\)
a) Ta có: \(126=5^0+5^3\)
\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)
Áp dụng lần lượt như thế, ta có:
\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)
Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)
Trong khi đó: \(126=2\cdot3^2\cdot7\)
Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.
Từ đó suy ra S không chia hết cho 126.
b) Tất cả các số hạng đều có chữ số tận cùng là 5.
Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.
=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)
Cho S = 5+5 ^2 +5 ^3+..........+5 ^96
a Chứng minh S chia hết 126
b tìm chữ số tận cùng của S
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
1) Cho S= 5+52+53+.....+5
a. Chứng minh : S chia hết cho 126
b. Tìm chữ số tận cùng của S
2) Chứng minh A=n(5n+3) chia hết cho n với mọi n thuộc Z
Cho S= 5+5^2+5^3+...+5^2006. Tính S. Chứng minh S chia hết cho 126
Ta có
\(5S=5^2+5^3+..+5^{2007}=\left(5+5^2+5^3+..+5^{2006}\right)+5^{2007}-5\)
hay \(5S=S+5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
mà
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)..+\left(5^{2001}+5^{2004}\right)+\left(5^{2005}+5^{2006}\right)\)
hay \(S=126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}+6.5^{2005}\)
mà rõ ràng \(126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}\)chia hết cho 126
còn \(6.5^{2005}\) không chia hết cho 126 nên S không chia hết cho 126.
Cho S= 5+5^2+5^3+...+5^2006. Tính S. Chứng minh S chia hết cho 126
ko chia hết được bán nhé nên không chứng minh được
Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )
= 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )
= 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )
= 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126
= 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126
=> A ⋮ 126 ( đpcm )
Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )
= 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )
= 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )
= 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126
= 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126
=> A ⋮ 126 ( đpcm )
Ch S = 5 + 5^2 + 5^3 + .... + 5^2012
Chứng minh S chia hết cho 65 nhưng ko chia hết cho 126