cho b là số nguyên tố >a có dạng 6.k hoặc 6.k+5 tìm b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho b là số nguyên tố lớn hơn a có dạng 6.k+1 hoặc 6.k+5
cho p là số nguyên tố
p>3
a:chứng tỏ p có dạng 6*k+1 hoặc 6*k+5
b:biết 8*p+1 là số nguyên tố chứng minh 4*p+1 là hợp số
cần lời giải lớp 6
cảm ơn trước nhé !
a)ta có p có 6 dạng:6k;6k+1;6k+2;........;6k+5
p=6k=>p là hợp số=>p khác 6k
p=6k+1 thì p là số ng t =>p=6k+1
p=6k+2 thì p chia hết cho 2=>p khác 6k+2
p=6k+3 thì p chia hết cho 3=>p khác 6k+3
p=6k+4 thì p chia hết cho 2=>p khác 6k+4
p=6k+3 thì p là số ng t=>p=6k+5
vậy:p=6k+1 và 6k+5
ê Thiên Triệu bn trong danh sách bn của mk đó
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Bài 1 :Cho A bằng 2^4.5^3.7^8
A có chia hết cho 16;25;100;280 không ?
Bài 2: a) Viết số 1013 dưới dạng tổng của K hợp số .Tìm K lớn nhất .
b) Viết số 1013 dưới dạng tổng của k số nguyên tố .Tìm K lớn nhất .
Bài 3: Chứng minh
a) A=1001.1002.1003.1004+1 là hợp số
b) A=80^2=79.80+1016.k là số nguyên tố
Bài 4: Tìm số nguyên tố P biết:
a)P+3;P+5 đều là số nguyên tố
b)P+26;P=28 đều là số nguyên tố
Bài 4:
Cho P là số nguyên tố lớn hơn 3
a)Chứng tỏ P chỉ có 1 trong 2 dạng 6k+1 hoặc 6k+5
b)Biết 8P+1 cũng là số nguyên tố .Chứng minh 4P+1 là hợp số .
Các bạn giải giùm với !Biết bài nào thì giải bài ấy không cần phải giải hết đâu!Các bạn giải nhanh giùm mình cái ,mình đang cần gấp lắm !!!
B1 :
Vì 2^4 = 16 chia hết cho 16
=> A chia hết cho 16
Vì 5^3 = 125 chia hết cho 25
=> A chia hết cho 25 (1)
A chia hết cho 16 => A chia hết cho 4 (2)
Từ (1) và (2) => A chia hết cho 100 ( vì 4 và 25 là 2 số nguyên tố cùng nhau )
Vì 2^4 chia hết cho 16
5^3 chia hết cho 25
=> A chia hết cho 16.25 = 400
=> A chia hết cho 40
Mà 7^8 chia hết cho 7 => A chia hết cho 7
=> A chia hết cho 280 ( vì 40 và 7 là 2 số nguyên tố cùng nhau )
k mk nha
Tìm số tự nhiên k cho:
a) 7k là số nguyên tố
b) k , k + 6 , k + 8 , k + 12 , k + 14 đều là số nguyên tố
Tìm số tự nhiên k sao cho :
a) 7k là số nguyên tố;
b) k, k+6, k+8, k+12, k+14 đều là số nguyên tố
a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k nên 7k là hợp số ( không thỏa mãn).
Với k = 1 thì 7k = 7 là số nguyên tố.
Vậy k = 1.
b, k chia cho 5 có thể dư 0,1,2,3,4.
Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).
Với k chia cho 5 dư 2 thì k+8 ⋮ 5 và k+8 > 5 nên k+8 là hợp số ( loại).
Với k chia cho 5 dư 3 thì k+12 ⋮ 5 và k+12 > 5 nên k+12 là hợp số ( loại).
Với k chia cho 5 dư 4 thì k+6 ⋮ 5 và k+6 > 5 nên k+6 là hợp số ( loại).
Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )
Với k = 5. Thử thấy 5,11,13,17,19 đều là số nguyên tố.
Vậy k = 5.
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿
tìm k thuộc N sao cho
a) 11k là số nguyên tố
b) k;k+6;k+8;k+12;k+14 là số nguyên tố
c) k+ 2 và k+4 là số nguyên tố (k thộc số nguyên tố)
tìm k thuộc N
a) 11k là số nguyên tố
b) k;k+6;k+8;k+12;k+14 là số nguyên tố
c) k+2 và k+4 là số nguyên tố ( k là số nguyên tố)
Vì là số nguyên tố nên nên
Nếu k=2=> k+2=4 là hợp số
Nếu k=3 => k+2=5; k+4=7 đều là hợp số
Vậy k=3
a﴿ Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó. Mà 11 là số nguyên tố
11k có các ước: 1,k và 11 ﴾vẫn còn nếu k là hợp số﴿
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) ﴿ Vì k là số tự nhiên nên :
Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
Nếu k ≥ 2 thì 7 . k ∈ B﴾7﴿, không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài
câu c tương tự câu b