Những câu hỏi liên quan
HM
Xem chi tiết
TM
Xem chi tiết
VT
Xem chi tiết
DA
Xem chi tiết
DA
Xem chi tiết
HH
Xem chi tiết
VH
Xem chi tiết
TT
16 tháng 4 2021 lúc 22:02

undefined

Bình luận (0)
AH
16 tháng 4 2021 lúc 22:20

Lời giải:

Đặt $f(x)=Q(x)(x+1)(x^2+1)+ax^2+bx+c$ trong đó $ax^2+bx+c$ là đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$

Ta có:

$f(x)=Q(x)(x+1)(x^2+1)+a(x^2-1)+b(x+1)+a-b+c$

$=(x+1)[Q(x)(x^2+1)+a(x-1)+b]+a-b+c$

Do đó $f(x)$ chia $x+1$ có dư là $a-b+c$

$\Rightarrow a-b+c=4(*)$

Lại có:

$f(x)=Q(x)(x+1)(x^2+1)+a(x^2+1)-a+bx+c$

$=(x^2+1)[Q(x)(x+1)+a]+bx+(c-a)$

$\Rightarrow f(x)$ khi chia $x^2+1$ có dư là $bx+(c-a)$

$\Rightarrow bx+(c-a)=2x+3$

$\Rightarrow b=2; c-a=3(**)$

Từ $(*);(**)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$

Bình luận (2)
HN
Xem chi tiết
YM
Xem chi tiết
AH
25 tháng 6 2024 lúc 13:15

Lời giải:
Gọi đa thức ban đầu là $Q(x)$. Khi chia cho $(x-1)(x-2)$ ta được dư là $E(x)$ và dư $ax+b$ với $a,b$ là số thực.

Ta có:

$Q(x)=(x-1)(x-2)E(x)+ax+b$

$Q(1)=a+b=2$

$Q(2)=2a+b=3$

$\Rightarrow a=1; b=1$

Vậy dư trong phép chia $Q(x)$ cho $(x-1)(x-2)$ là $x+1$

Bình luận (0)
HH
Xem chi tiết