\(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)
giải phương trình \(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)15
giải phương trình:\(x+\sqrt{50-x^2}+x.\sqrt{50-x^2}=15\)
Giải BPT :
\(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)
tui cx có bài như vạy nhưng 50 là 17 cơ, đặt 2 cái đầu =a, sau đó tìm a^2
Rút gọn \(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right).\sqrt{x+\sqrt{x^2}-50}+2018\)với \(x\ge\sqrt{50}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Rút gọn biểu thức A=\(\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\)
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\left(ĐKXĐ:A\ge0\right)\)
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(\sqrt{x+\sqrt{x^2-50}}\right)^2\)
\(A^2=\left[x-\sqrt{50}-2\left(\sqrt{\left(x-\sqrt{50}\right).\left(x+\sqrt{50}\right)}\right)+x+\sqrt{50}\right]\left(x+\sqrt{x^2-50}\right)\)
\(A^2=\left[2x-2\left(\sqrt{x^2-50}\right)\right].\left(x+\sqrt{x^2-50}\right)\)
\(A^2=2x^2+2x\left(\sqrt{x^2-50}\right)-2x\left(\sqrt{x^2-50}\right)-2\left(\sqrt{x^2-50}\right)^2\)
\(A^2=2x^2-2\left(x^2-50\right)\)
\(A^2=100\)
\(\Rightarrow A=10\)
Trịnh Thành Công - Trang của Trịnh Thành Công - Học toán với OnlineMath đáp án là - 10 chứ không phải 10 đâu.
Rút gọn A=\(\left(\frac{5\sqrt{x}+50}{x+5\sqrt{x}}+\frac{2\sqrt{x}-10}{\sqrt{x}}+\frac{x}{5\sqrt{x}+25}\right).\frac{7}{15+3\sqrt{x}}\)
Rút gọn
A=( \(\sqrt{x-\sqrt{50}-\sqrt{x+\sqrt{50}}}\) ) . \(\sqrt{x+\sqrt{x^2-50}}\) ( x ≥ \(\sqrt{50}\) )
Rút gọn biểu thức \(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\) với \(x\ge50\)
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2}-50}\)
Suy ra
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x-\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x^2-\left(\sqrt{x^2-50}\right)^2\right)=2\left(x^2-\left(x^2-50\right)\right)=100\).
Với \(x\ge50\) thì \(x-\sqrt{50}< x+\sqrt{50}\) hay \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\).
Suy ra \(A< 0\) mà \(A^2=100\) hay \(A=-10\).
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......