Những câu hỏi liên quan
PA
Xem chi tiết
PT
21 tháng 6 2017 lúc 14:50

- Ta có trên trục số 2 điểm A và B lần lượt là : \(\frac{a}{b},\frac{c}{d}\)
mà trên trục số \(\frac{a}{b}\)nằm bên trái \(\frac{c}{d}\)=) \(\frac{a}{b}< \frac{d}{c}\)
- Như ta đã biết : Nếu \(\frac{a}{b}< \frac{c}{d}\)=) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
- Mà kí hiệu \(\frac{a+c}{b+d}\)là C
Vậy ta luôn có \(C\)nằm giữa \(A,B\)=) Trên trục số,giữa 2 điểm biểu diễn 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)luôn tồn tại 1 điểm biểu diễn số hữu tỉ khác ( ĐPCM )

Bình luận (0)
DK
15 tháng 4 2020 lúc 15:47

có ai trả lời hộ mình câu hỏi này ở trong trang cá nhân của mình ko

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
DH
7 tháng 6 2017 lúc 11:16

+) Nếu \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow2\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)(1)

=> \(\frac{\frac{a}{b}+\frac{c}{d}}{2}\) là một điểm hữu tỉ nằm giữa hai điểm hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\) trên trục số(1)

Tương tự \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)

=> \(\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa hai điểm hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)trên trục số(2)

Từ (1) và (2) ta có điều phải chứng minh

Bình luận (0)
H24
Xem chi tiết

‐ Ta có trên trục số \(2\) điểm \(A\) và \(B\) lần lượt là :\(\frac{a}{b},\frac{c}{d}\) 

mà trên trục số\(\frac{a}{b}\) nằm bên trái\(\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
‐ Như ta đã biết : Nếu\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Mà kí hiệu\(\frac{a+c}{b+d}\) là \(C\)

Vậy ta luôn có \(C\) nằm giữa \(A,B\)

\(\Rightarrow\) Trên trục số,giữa \(2\) điểm biểu diễn \(2\) số hữu tỉ \(\frac{a}{b}\) và\(\frac{c}{d}\)
luôn tồn tại \(1\) điểm biểu diễn số hữu tỉ khác \(\left(DPCM\right)\)

NHỚ TK MK NHA

Bình luận (0)

CÁCH 2 NÈ

+) Nếu\(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow2.\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2.\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)

\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm \(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(1\right)\)

Tương tự:

+)Nếu\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)

\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm\(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(2\right)\)

Từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\)trên trục số giữa hai điểm hữu tỉ tùy ý a/b và c/d ( a,b,c, d thuộc z ;b,d khác 0)luôn tồn tại một điểm hữu tỉ khác.

NHỚ TK MK NHA

Bình luận (0)
TD
Xem chi tiết
MT
Xem chi tiết
BA
Xem chi tiết
TM
Xem chi tiết
KN
23 tháng 8 2020 lúc 21:14

Áp dụng bất đẳng thức Bunyakovsky ta được:          \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)

Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)

Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
DN
14 tháng 9 2021 lúc 16:12

Ta có trên trục số 2 điểm A và B lần lượt là : ab,cdab,cd
mà trên trục số ababnằm bên trái cdcd=) ab<dcab<dc
- Như ta đã biết : Nếu ab<cdab<cd=) ab<a+cb+d<cdab<a+cb+d<cd
- Mà kí hiệu a+cb+da+cb+dlà C
Vậy ta luôn có CCnằm giữa A,BA,B=) Trên trục số,giữa 2 điểm biểu diễn 2 số hữu tỉ ababvà cdcdluôn tồn tại 1 điểm biểu diễn số hữu tỉ khác ( ĐPCM )

Bình luận (0)
 Khách vãng lai đã xóa
TN
14 tháng 9 2021 lúc 16:14

a) x2=7=>x=(7–√;−7–√)x2=7=>x=(7;−7) , các số này đều vô tỉ => xx không là số hữu tỉ ( đpcm )
b) x2−3x=1=>4x2−12x−4=0<=>(2x−3)2=13<=>x=(−sqrt13+32;sqrt13+32)x2−3x=1=>4x2−12x−4=0<=>(2x−3)2=13<=>x=(−sqrt13+32;sqrt13+32) , các số này đều vô tỉ => xx không là số hữu tỉ ( đpcm )
c) đề thiếu.
P/s: có một bổ đề khá thú vị 
x=a−−√x=a , xx đạt giá trị hữu tỉ / nguyên khi và chỉ khi aa là số chính phương.
Thật vậy, giả sử aa không phải số chính phương, bình phương 2 vế ta được: a=x2a=x2 ( vô lý )
Do đó a là số chính phương/

Bình luận (0)
 Khách vãng lai đã xóa
TN
14 tháng 9 2021 lúc 16:17

- Ta có trên trục số 2 điểm A và B lần lượt là : \(\frac{a}{b},\frac{c}{d}\)

mà trên trục số \(\frac{a}{b}\)nằm bên trái \(\frac{c}{d}\)= ) \(\frac{a}{b}< \frac{d}{c}\)

- Như ta đã biết : Nếu \(\frac{a}{b}< \frac{c}{d}=>\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

- Mà kí \(\frac{a+c}{b+d}\)là C

Vậy ta luôn có nằm giữa A,B=) Trên trục số,giữa 2 điểm biểu diễn 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)luôn tồn tại 1 điểm biểu diễn số hữu tỉ khác ( ĐPCM )

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
H24
28 tháng 12 2020 lúc 20:32

Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho

Bình luận (0)
 Khách vãng lai đã xóa