Tìm số tự nhiên a nhỏ nhất, biết: a : 8 cho 10, cho 15, cho 20 được số dư lần lượt là: 5 ; 7 ; 12 ; 17 và biết a chia hết cho 79
tìm số tự nhiên nhỏ nhất chia cho 8 ; 10 ; 15 ; 20 có số dư lần lượt là 5 ; 7 ; 12 ; 17
Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có :
a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)
a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)
a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)
a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)
\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)
Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)
\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)
\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)
\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)
Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)
Vậy số tự nhiên cần tìm là 117
Gọi số cần tìm là a
Ta có a : 8 dư 5 => a + 3 ⋮ 8
a : 10 dư 7 => a + 3 ⋮ 10
a : 15 dư 12 => a + 3 ⋮ 15
a : 20 dư 17 => a + 3 ⋮ 20
=>a + 3\(\in\) BC(8,10,15,20)
8 = 23
10 = 2.5
15 = 3.5
20 = 22.5
BCNN(8,10,15,20) = 23.3.5 = 120
=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}
=> a \(\in\) {-3;117;237;...}
Vì a nhỏ nhất nên a = 117
tìm số tự nhiên nhỏ nhất biết khi chia cho 15 , 20 , 25 thì được số dư lần lượt là 5 , 10 , 15
Ai làm đúng và nhanh nhất mk tick cho nha
Gọi a là số cần tìm
=> a+10 sẽ chia hết cho 15, 20, 25 (Do a:15 dư 5, a:20 dư 10 và a:25 dư 15)
=> a+10 sẽ là BSC (15,20,25)
Ta có: 15=3.5
20=22.5
25=52
=> BSCNN (15,20,25)=22.3.52=300
=> a+10=300 => a=300-10
a=290
Đáp số: Số cần tìm là 290
1) TÌM SỐ TỰ NHIÊN NHỎ NHẤT BIẾT SỐ ĐÓ CHIA CHO 8 CHIA 10 CHIA CHO 15 VÀ CHIA 20 ĐƯỢC SỐ DƯ LẦN LƯỢT LÀ 5, 7, 12, 17 VÀ CHIA HẾT CHO 41
ê thằng cu kia
Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41
Gọi a là số tự nhiên nhỏ nhất cần tìm :
Theo bài ra, ta có:
a \(⋮8\)(dư 5 )
\(a⋮10\left(dư7\right)\)
\(a⋮15\left(dư12\right)\)
\(a⋮20\left(dư17\right)\)
Ta tìm BCNN ( \(8;10;15;20\))
8=23
10=2.5
15=3.5
20=22.5
Nên BCNN là : 120
Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)
\(\Rightarrow n+3=41k+3\)
\(\Rightarrow41k+3⋮120\)
\(\Rightarrow41k⋮120-3\)
\(\Rightarrow41k⋮117\)
\(\Rightarrow a⋮117\)
Theo bài thì ta có:
\(a⋮41vs117\)
\(\Rightarrow a\in BC\left(41vs117\right)\)
Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117
\(\Rightarrow a=BCNN\left(41;117\right)\)
Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797
Vậy số cần tìm là 4797
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.
Tìm số tự nhiên nhỏ nhất chia cho 8, cho 10, cho 15, cho 20 dư thứ tự lần lượt là: 5,7,12,17 và chia hết cho 41
Tìm số tự nhiên nhỏ nhất chia hết cho 23 và khi chia cho 8, 12, 15 được số dư lần lượt là 6, 10, 13
Tìm số tự nhiên nhỏ nhất chia hết cho 23 và khi chia cho 8, 12, 15 được số dư lần lượt là 6, 10, 13
Gọi số phải tìm là a, a ∈ N
Vì a chia cho 8,12,15 được số dư lần lượt là 6,10,13 nên (a+2) chia hết cho 8,12,15.
Suy ra (a+2) ∈ BC(8,12,15)
Ta có: 8 = 2 3 ; 12 = 2 2 . 3 ; 15 = 3.5
=> BCNN(8,12,15) = 2 3 .3.5 = 120
Suy ra (a+2) ∈ BC(8,12,15) = B(120)
Do đó, a+2 = 120k => a = 120 – 2 (k ∈ N*)
Lần lượt cho k = 1,2,3,… đến k = 5 thì được a = 598 ⋮ 23
Vậy số phải tìm là 598
1 , Tìm số tự nhiên nhỏ nhất , biết rằng : số đó chia cho 8 dư 6 , chia cho 12 dư 10 , chia cho 15 dư 13 và chia hết cho 23.
2 , Tìm số tự nhiên lớn nhất có 3 chữ số , sao cho chia nó cho 2 ;3 ;4 ; 5 ; 6 ta được dư lần lượt là 1 ; 2; 3; 4 ; 5 .