Tìm số abcdef ( d khác 0) biết abcdef = 999. abc+200
Tìm số abcdef biết d khác 0 sao cho abcdef b= 999 * abc + 200.
Tìm số abcdef (d khác 0) sao cho abcdef = 999. abc + 200
Giải thích các bước giải:
abcdf = 999 . abc + 200
-> abc = 999 - 200 = 799
-> abc =999.799 + 200
-> abc = 798401
-> 798401 = 999.799 + 200
a, Viết Các Số: 123 , 2355 , abcde dưới dạng các lũy thừa của 10
b, Tìm số abcdef [d khác 0 ] sao cho abcdef = 999 nhân abc + 200
tìm số có 6 chữ số abcdef biết abcdef=(abc+def)^2
Câu trả lời hay nhất: Ký hiệu (x...z) là số có các chữ số x, ..., z
-------------
(abcdef) = (abc)*1000 + (def) = [(abc) + (def)]². Đặt (abc) = x, (def) = y có 1000x + y = (x + y)² ♦
=> (x + y)² ≤ 1000*999 + 999 = 999999 => x + y ≤ √999999 = 999,9 => x + y ≤ 999 ♥
♦ <=> 3³ * 37 * x = 999x = (x + y)² - (x + y) = (x + y - 1)(x + y)
Do (x + y - 1) và (x + y) nguyên tố cùng nhau (2 số tự nhiên liên tiếp luôn nguyên tố cùng nhau) nên nếu 1 số chia hết cho 3 thì phải chia hết cho 3³ vì số kia không có ước 3. Chỉ có thể có 3 th
1. Có 1 số chia hết cho 3³ * 37 = 999. Số đó phải là (x + y) vì ngược lại thì (x + y) > 999, mâu thuẫn với ♥
Vậy x + y = 999 (do ♥) <=> x = x + y - 1 <=> y = 1 <=> x = 998 (dấu <=> vì nếu x = 998 thì (x + y)(x + y - 1) = 999x = 999*998 => x + y = 999 và x + y - 1 = 998).
Ta có nghiệm (abcdef) = 998001
2. x + y = 27k, x + y - 1 = 37m => 27k = 37m + 1 = 36m + m + 1 = 27m + 10m + 1, m < 27
=> m + 1 chia hết cho 9 => m = 8, 17, 26, nhưng 10m + 1 phải chia hết cho 27 nên loại m = 17, 26 do 171 không chia hết cho 3 và 261 = 270 - 9 không chia hết cho 27
Với m = 8 có 3k = 4m + 1 = 33 => k = 11
x = (x + y - 1)(x + y) / (27*37) = 27*k*37*m / (27*37) = km = 88, loại do x ≥ 100
3. x + y = 37k, x + y - 1 = 27m => 27m = 37k - 1 = 36k + k - 1 = 27k + 10k - 1, k < 27
=> k - 1 chia hết cho 9 => k = 10, 19, nhưng 10k - 1 phải chia hết cho 27 nên loại k = 10 do 10*10 - 1 = 9*11 không chia hết cho 27
Với k = 19 có 3m = 4k + 2 = 78 => m = 26
=> x = km = 19*26 = 494 => y = 37k - x = 37*19 - 494 = 209
Dễ thấy (494 + 209)² = 494209
Kết luận: (abcdef) = 998001, 494209
Tìm abcdef biết (abc+def)^2=abcdef
thằng gà này, dám đi hỏi bài à !!!
Tìm các số có 6 chữ số abcdef (các chữ số có thể giống nhau) thỏa mãn: abcdef = 3 × abc × def.
Tìm số tự nhiên abcdef sao cho abcdef=3.abc.def
(abcdef, abc, def có dẫu gạch ở trên)
Gen a, b nằm trên NST số 20 cách nhau 20cM. Gen c, d nằm trên NST khác cách nhau 10cM. Trong khi đó gen e, f nằm trên NST thứ 3 cách nhau 30cM. Lai hợp tử về các gen ABCDEF với abcdef . XS thu được cá thể có KG tương ứng với gen aBCdef và abcDeF?
Câu hỏi của bạn chưa rõ. Bạn viết lai hợp tử về các gen ABCDEF với abcdef, có phải ý của bạn là lai 2 cá thể đồng hợp tử về các gen đó?
Giả sử là lai 2 cá thể đồng hợp tử về các gen đó, tức là ta có phép lai:
AB/AB CD/CD EF/EF x ab/ab cd/cd ef/ef
Trong các cá thể đồng hợp tử, nếu có xảy ra hoán vị gen thì cũng không có ý nghĩa, như trong trường hợp này, không thể tạo ra được các giao tử aB, Cd, cD, eF.
Vì vậy, mà trong câu hỏi của bạn, xác suất thu được các cá thể aB/aB Cd/Cd ef/ef và ab/ab cD/cD eF/eF bằng không.
Nếu ý câu hỏi của bạn là khác, bạn có thể trình bày lại một cách rõ ràng hơn được không?
Tìm số tự nhiên abcdef sao cho abcdef=3.abc.def