Cho số tự nhiên A=ax. by( a, b là số nguyên tố;x, y thuộc N*)
a. Biết A có 8 ước Tìm A nhỏ nhất
b. Biết A có 10 ước Tìm số ước của A100
cho a là số tự nhiên lẻ , b là số tự nhiên . CMR : các số a và a . b + 4 nguyên tố cùng nhau
Gọi d là ước số của a và ab+4
=> a, ab và (ab+4) chia hết cho d
=>(ab+4)-ab chia hết cho d
hay 4 chia hết cho d
=> d=1, 2, 4.
Do a là số lẻ mà a chia hết cho d nên d phải lẻ
=> d=1
Vậy a và (ab+4) là 2 số nguyên tố cùng nhau
(a) Tìm một số tự nhiên a để 97.a là số nguyên tố
(b) Tìm một số tự nhiên b để 101.b là hợp số
(c) Tìm một số nguyên tố p để p2+974 là số nguyên tố
a) Do 97 là số nguyên tố mà 97.a cũng là số nguyên tố nên a=1
b) 101 là số nguyên tố để 101.b là hợp số thì b>=2
c) Xét p=2 thì p2+974 là hợp số (loại)
Xét p=3 thì p2+974 là số nguyên tố
Xét p=3k+1 và 3k+2 thì p2+974 là hợp số (loại)
Vậy p=3 thì p2+974 là số nguyên tố
(a) Tìm một số tự nhiên a để 97.a là số nguyên tố
(b) Tìm một số tự nhiên b để 101.b là hợp số
(c) Tìm một số nguyên tố p để p2 +974 là số nguyên tố
a) a = 1
b) b \(\ge\) 2
c) p = 3
tick đúng cho mình nhé !
a) Tìm một số tự nhiên a để 97.a là số nguyên tố
b) Tìm một số tự nhiên b để 101.b là hợp số
c) Tìm một số nguyên tố p để p2 + 974 là số nguyên tố
a) Do 97 là số nguyên tố mà 97.a cũng là số nguyên tố nên a=1
b) 101 là số nguyên tố để 101.b là hợp số thì b>=2
c) Xét p=2 thì p2+974 là hợp số (loại)
Xét p=3 thì p2+974 là số nguyên tố
Xét p=3k+1 và 3k+2 thì p2+974 là hợp số (loại)
Vậy p=3 thì p2+974 là số nguyên tố
Cho a+b=p(p là nguyên tố ; a,b là số tự nhiên). Chứng minh a;b là nguyên tố cùng nhau
cho a là số tự nhiên lẻ b là một số tự nhiên chứng minh a ; ab +4 là số nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Tìm giao của hai tập hợp A và B:
a) A là tập hợp các số tự nhiên chia hết cho 3. B là tập hợp các số tự nhiên chia hết cho 9.
b) A là tập hợp các số nguyên tố. B là tập hợp các hợp số.
c) A là tập hợp các số nguyên tố bé hơn 10. B là tập hợp các chữ số lẻ
a) Gọi C là tập hợp giao của hai tập hợp A và B thì C là tập hợp gồm các số tự nhiên chia hết cho 9
b) Giao của hai tập hợp bằng rỗng
c) Gọi D là tập hợp giao của hai tập hợp A và B thì C = {3; 5; 7}
bài 9:Tìm số nguyên tố p sao cho:
a)p+16;p+38 cũng là các số nguyên tố
b)p+28;p+44 cũng là các số nguyên tố
c)p+26;p+42;p+48'p+74 là các số nguyên tố
bài 10:a)tổng 3 số tự nhiên liên tiếp là số nguyên tố hay hợp số?
b)tổng 3 số tự nhiên lẻ liên tiếp là số nguyên tố hay hợp số?
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi