Những câu hỏi liên quan
DD
Xem chi tiết
NT
Xem chi tiết
DL
15 tháng 6 2016 lúc 0:55

Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)

Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q

Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.

Bình luận (0)
TT
Xem chi tiết
FF
19 tháng 6 2016 lúc 12:47

p(p-1)=(q-1)(q-2) (*) 
=> p | q-1 hoặc p | q-2 
do p nguyên tố, (q-1;q-2)=1 

1.Nếu p|q-1 thì p <= q-1 
Từ (*) suy ra p-1>=q-2 
=> p>=q-1 
Do đó p=q-1 
Mà p,q nguyên tố nên p=2,q=3 
Khi đó p^2+q^2=13 là số nguyên tố 
2.Xét p|q-2 
Từ (*) => q-2 > 0 
Lập luận tương tự TH1 dẫn tới mâu thuẫn

Bình luận (0)
TN
Xem chi tiết
DH
21 tháng 4 2020 lúc 12:25

Ta có p^2-p=q^2-3q+2 <=> p(p-1)=(q-1)(q-2) (*)

Từ (*) suy ra p|(q-1)(q-2). Do p là snt nên p|(q-1) hoặc p|(q-2)
+) Xét p|(q-1). Đặt q=kp+1 (k E N*) thay vào (*):

kp(kp-1)=p(p-1) <=>k(kp-1)=p-1 <=> pk^2 -k-p+1=0.<=>(p-1)[p(k+1)-1]=0

=>k=1 (Do p(k+1)-1>0).

Lúc này q=p+1>=3. Do vậy p=2. q=3 (Do p;q nguyên tố) suy ra p^2+q^2=13 là snt
Xét p|(q-2) đặt q=tp+2 (t E N*) . Thay vào (*) biến đổi tương tự ta được . (t+1)[p(k-1)+1]=0 (vô lý nên loại)

Vậy đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 9 2020 lúc 22:08

p- q= p - 3q + 2 

4p- 4q= 4p - 12q + 8

4p- 4p + 1 = 4q- 12q + 9

(2p - 1)2 = (2q - 3)2

Mà 2p - 1 >0(p nguyên tố);2q - 3 >0(q nguyên tố)

Do đó 2p - 1 = 2q - 3 <=> p + 1 = q

Ta có q > 3 (vì p > 2) nên q lẻ, do đó p chẵn

=> p = 2. Nên q = p + 1 = 3

Vậy p+ q2 = 2+ 3= 4 + 9 = 13 là số nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
TN
Xem chi tiết
TU
20 tháng 7 2016 lúc 21:39

bạn có nhầm đề bài k vậy

Bình luận (0)
TM
Xem chi tiết
H24
21 tháng 7 2016 lúc 11:27

cam on

Bình luận (0)
TM
Xem chi tiết
Xem chi tiết
ND
1 tháng 10 2020 lúc 17:48

Bài 2:

Ta có: \(a+b+c=2\)

\(\Leftrightarrow\left(a+b+c\right)^2=4\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=2\)

\(\Rightarrow ab+bc+ca=1\)

Thay vào ta được: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

Tương tự CM được: \(b^2+1=\left(b+a\right)\left(b+c\right)\) và \(c^2+1=\left(c+a\right)\left(c+b\right)\)

=> \(M=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa