Chứng minh hai số nguyên tố cùng nhau
2n+1 và 4n+3(n thuộc N)
Chứng minh rằng : Hai số n+1 và 4n+3 là hai số nguyên tố cùng nhau với mọi n thuộc N
n+1 và 4n+3 là 2 số nguyên tố cùng nhau khi ƯCLN (n+1;4n+3)=1
gọi ƯCLN (n+1;4n+3)=d
=>[(n+1)+(4n+3)] chia hết cho d
=>1 chia hết cho d =>d=1
=>ƯCLN(n+1;4n+3) =1
vậy n+1 và 4n+3 là 2 số nguyên tố cùng nhau
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
chứng minh rằng với mọi n thuộc N thì 2n+1 và 4n+3 là hai số nguyên tố cùng nhau
Đặt \(\left(2n+1,4n+3\right)=d\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
2n+1 và 9n+4
Chứng minh rằng 4n+1 và 6n+1 là hai số nguyên tố cùng nhau với mọi n thuộc N
câu 3 chứng minh hai số sau nguyên tố cùng nhau
5n+9 và 4n +7(n thuộc N)
Gọi d là ƯCLN( 5n + 9 ; 4n + 7 ) ( d ∈ N )
Ta có : 5n + 9 ⋮ d và 4n + 7 ⋮ d
=> 4( 5n + 9 ) ⋮ d và 5( 4n + 7 ) ⋮ d
=> 20n + 36 ⋮ d và 20n + 35 ⋮ d
=> ( 20n + 36 ) - ( 20n + 35 ) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN(5n + 9;4n + 7 ) = 1 nên 5n + 9 và 4n + 7 là nguyên tố cùng nhau ( đpcm )
Chứng minh rằng: Số 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau với n thuộc N*
Gọi d là ƯCLN(3n + 1; 4n + 1), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n+1\right)⋮d\\3\left(4n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+4⋮d\\12n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+1;4n+1\right)=1\)
\(\Rightarrow\)3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau.
Chứng minh rằng : 3n+1 và 4n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Gọi ƯCNL(3n+1 ; 4n+1) = d
Ta có : 3n + 1 chia hết cho d => 4(3n + 1) chia hết cho d
4n + 1 chia hết cho d => 3(4n + 1) chia hết cho d
=> 4(3n + 1) - 3(4n + 1) chia hết cho d
=> (12n + 4) - (12n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN(3n+1;4n+1)
3n+1 chia hết cho d 4(3n+1) chia hết cho d 12n+4 chia hết cho d(1)
=>{ =>{ =>
4n+1 chia hết cho d 3(4n+1) chia hết cho d 12n+3 chia hết cho d(2)
Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d
=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Đặt ƯCLN(3n + 1;4n + 1) = d
Ta có:3n + 1 chia hết cho d
4n + 1 chia hết cho d
=> 4(3n + 1 - 3(4n + 1) chia hết cho d
12n + 4 - 12n - 3 chia hết cho d
1 chia hết cho d => d \(\in\)Ư(1) = 1
Vậy: ƯCLN(3n + 1;4n + 1) = 1 hay 3n + 1 và 4n + 1 là 2 nguyên tố cùng nhau (đpcm)
chứng minh rằng 3n + 1 và 4n + 1 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n + 1; 4n + 1) Nên ta có :
3n + 1 ⋮ d và 4n + 1 ⋮ d
=> 4(3n + 1) ⋮ d và 3(4n + 1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> (12n + 4) - (12n + 3) ⋮ d
=> 1 ⋮ d => d = ± 1
Vì ƯCLN(3n + 1; 4n + 1) = 1 nên 3n + 1 và 4n + 1 là nguyên tố cùng nhau ( đpcm )
Gọi \(d=\left(3n+1,4n+1\right)=>\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}}\)
\(=>\left(4n-1\right)-\left(3n-1\right)⋮d\)
\(=>4\left(3n-1\right)-3\left(4n-1\right)⋮d\)
\(=>\left(12n-4\right)-\left(12n-3⋮d\right)\)
\(=>1⋮d\)(đpcm)
Chứng minh rắng với n thuộc N* thì 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Gọi UCLN\(\left(3n+1,4n+1\right)=d\)
=) \(3n+1⋮d
\)=) \(4\left(3n+1\right)⋮d\)=) \(12n+4⋮d\)
\(4n+1⋮d\)=) \(3\left(4n+1\right)⋮d\)=) \(12n+3⋮d\)
=) \(\left(12n+4\right)-\left(12n+3\right)⋮d\)
=) \(12n+4-12n-3⋮d\)
=) \(1⋮d\)=) \(d\inƯ\left(1\right)=1\)
=) UCLN\(\left(3n+1,4n+1\right)=1\)
Vậy \(3n+1,4n+1\)là 2 số nguyên tố cùng nhau ( ĐPCM )