Những câu hỏi liên quan
PB
Xem chi tiết
CT
31 tháng 7 2017 lúc 3:20

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 8 2019 lúc 7:27

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bình luận (0)
CH
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 1 2019 lúc 3:29

Đáp án C

Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy

Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 11 2017 lúc 15:48

TXĐ:  D= [ -3; 1].

Đặt:

Khi đó phương trình trở thành:

 

Do đó hàm số đồng biến trên D.

Chọn B.

Bình luận (0)
DN
Xem chi tiết
HH
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 6 2017 lúc 10:06

Vẽ hình:

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.

Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị bào của x để hàm số đạt giá trị nhỏ nhất.

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 7 2019 lúc 15:10

y ' = - 2 x - 1 2 < 0 trên đoạn [3; 5]. Vậy hàm số nghịch biến trên đoạn [3; 5].

Khi đó trên đoạn [-3,5]: hàm số đạt giá trị lớn nhất tại x = 3 và giá trị lớn nhất bằng 2, hàm số đạt giá trị nhỏ nhất tại x = 5 và giá trị nhỏ nhất = 1.5.

Bình luận (0)