Giải hệ phương trình: \(\hept{\begin{cases}x^2+2y^2-2xy-6x-10y+18=0\\2x^5+xy^2-3=0\end{cases}}\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
hãy dùng cái đầu bạn nhé :))))
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
109ubbbbbbbhy3333333333333
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ
Giải hệ phương trình : \(\hept{\begin{cases}y^2-2xy=5\\3x^2-xy+6x-2y=0\end{cases}}\)
Phương trình dưới <=> x(3x-y)+2(3x-y)=0 <=> (3x-y)(x+2)=0<=> y=3x hoặc x=-2
+) Với y=3x thế vào phương trình trên ta có:
\(9x^2-2.x.3x=5\Leftrightarrow3x^2=5\)
Em làm tiếp !
+) Với x=-2 thế vào phương trình trên
\(y^2+4y-5=0\)
Em nhớ làm tiếp nhé! Phải chăm học vào!:))
giải hệ phương trình: \(\hept{\begin{cases}2x^2y^2+x^2y-xy-x-1=0\\x^2y^2-x^2y+6x^2-x-1=0\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............
Giải hệ phương trình \(\hept{\begin{cases}xy^2+y=-6x^2\\x^3y^3+1=19x^3\end{cases}}\)
\(\hept{\begin{cases}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{cases}}\)
Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được.
(x² + 5x + 1)² = 0
A ali : em có cách khác :D
Cộng 2 vế của 2 pt trên lại với nhau ta được
\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)
\(\Leftrightarrow y^2-2y+3x+1=0\)
\(\Leftrightarrow\left(y-1\right)^2=-3x\)
\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)
Đến đây thế vào pt (2) sẽ tìm đc x
Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V
em quy đồng và khử mẫu lên nó ra thế này:
Pt (1) tương đương: \(x^2+x+3=2y\left(x+1\right)\Leftrightarrow y=\frac{x^2+x+3}{2\left(x+1\right)}\)
Thay vào pt (2) ta có: \(\left[\frac{x^2+x+3}{2\left(x+1\right)}\right]^2-x^2+2x.\frac{x^2+x+3}{2\left(x+1\right)}+2x-2=0\)
\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2}{4\left(x+1\right)^2}-x^2+\frac{x\left(x^2+x+3\right)}{x+1}+2x-2=0\)
\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x}{4\left(x+1\right)^2}=0\)
\(\Leftrightarrow\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x=0\)
thì khai triển tiếp hai sao ạ?
Giải hệ phương trình: \(\hept{\begin{cases}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\\y^2+xy+3y+1=0\end{cases}}\)
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)