Chứng minh: \(\frac{a^{2010}+2010}{\sqrt{a^{2010}+2009}}>2\)
Chứng minh\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}>\sqrt{2009}+\sqrt{2010}\)
Lấy vế trái trừ vế phải ta có:
\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\sqrt{2009}-\sqrt{2010}=\)\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\frac{2009}{\sqrt{2009}}-\frac{2010}{\sqrt{2010}}\)=\(\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\) (1)
2009<2010 lên biểu thức (1) >0
\(A=\frac{2010}{2009^2+1}+\frac{2010}{2009^2+2}+...+\frac{2010}{2009^2+2009}\)
Chứng minh A ko phải số nguyên dương các bạn ơi!!!
Chứng minh đẳng thức:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=1-\dfrac{\sqrt{2010}}{2010}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)
\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)
\(\frac{a^{2010}+2010}{\sqrt{a^{2010}+2009}}\ge2\)
A=\(\frac{a^{2010}+2009+1}{\sqrt{a^{2010}+2009}}\)
=\(\sqrt{a^{2010}+2009}+\frac{1}{\sqrt{a^{2010}+2009}}\)
Áp dụng bdt cosi cho 2 số ko âm
ta đc: A >= @
dấu = xảy ra khi a^2010+2009=1
a^2010=-2008( vô lý)
=> dấu = ko xảy ra
vậy A>2
Chứng minh nếu a+2009/a-2009=b+2010/b-2010 thì a/2009=b/2010
Cho tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\)chứng minh rằng \(\frac{a.c}{b.d}\)=\(\frac{2009.a^2+2010.c^2}{2009.b^2+2010.d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Vậy:
\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)
và
\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2009a^2}{2009b^2}=\frac{2010c^2}{2010d^2}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)
Vậy \(\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)
tính b=\(1^2-2^2+3^2-...+2008^2-2009^2\)
a=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
Câu a:
Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)
Áp dụng kết quả trên suy ra câu a
Cho \(A=\frac{2010}{2009^2+1}+\frac{2010}{2009^2+2}+...+\frac{2010}{2009^2+2009}\)
CM: A không phải số nguyên dương
\(A=\frac{2010}{2009^2+1}+\frac{2010}{2009^2+2}+...+\frac{2010}{2009^2+2009}\)
CMR: A không phải là số nguyên dương?