tìm số tự nhiên n sao cho 2n+5 chia hết cho 2n-1
tim so tu nhien n sao cho 2n+5 chia het cho 2n+1
đầu tiên bạn k rồi tớ sẽ giải
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Tim so tu nhien n sao cho :
4n-5 chia het cho 2n-1
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
a , tim cac so tu nhien x y sao cho (2x + 1 ) (y - 5)= 12
b , tim so tu nhien tu nhien sao cho 4n - 5 chia het cho 2n - 1
tim so tu nhien sao cho 4n-5 chia het cho 2n-1
tim so tu nhien sao cho 4n -5 chia het cho 2n-1
ta co 4n-5:2n-1
=>4n-2-3:2n-1
=>2(2n-1)-3:2n-1
=>3:2n-1 (vi 2(2n-2):2n-1)
=>2n-1 thuoc Ư(3)= 1 ,-1,3.-3
CÓ 2n-1=1 =>2n=2=>n=1 (tm)
2n-1=-1=>2n=0=>n=0(tm)
2n-1=3=>2n=4=>n=2(tm)
2n-1=-3=>2n=-2=>n=-1(loại)
vây x thuoc ( 1;0;2)
kich nhe
tim so tu nhien sao cho 4n-5 chia het cho 2n-1
4n-5 chia hết cho 2n-1
=>2(2n-1)-3 chia hết cho 2n-1
mà 2(2n-1) chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1 E Ư(3)={-3;-1;1;3}
=>2n E {-2;0;2;4}
=>n E {-1;0;1;2}
mà n E N
=>n E {0;1;2}
Tim so tu nhien n biet:
6n+27 chia het cho 2n+3;
2n+5 chia het cho 3n+1
a) Ta thấy :
27 chia hết cho 3
6n = 3.2.n chia hết cho 2.n
Vậy n = 0; 1; 2; 3; 4; 5; 6; ... hay n = mọi số tự nhiên .
b) 2n + 5 chia hết cho 3n + 1
2n + 4 + 1 chia hết cho 2n + n + 1
Vì 2n + 1 chia hết cho 2n + 1 nên 4 chia hết cho n
Ư(4) = 1; 2; 4
Vậy n = 1; 2; 4
Cấm COPY
Tim so tu nhien n sao cho 4n+3 chia het cho 2n+1
Ta có: \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để \(\left(4n+3\right)⋮\left(2n+1\right)\)thì \(1⋮\left(2n+1\right)\)
Hay:\(2n+1\inƯ\left(1\right)\)
\(\Leftrightarrow2n+1\in\left(\pm1\right)\)
\(\Leftrightarrow2n\in\left(-2;0\right)\)
\(\Leftrightarrow n\in\left(-1;0\right)\)
Vì n là số tự nhiên \(\left(n\in N\right)\)nên giá trị của n cần tìm là: \(n=0\)