tim n thuoc N biet n^2 +3n +7 chia het cho n+2
Tim n thuoc N , biet :
a) n+4 chia het cho n
b ) 3n + 7 chia het cho n
c ) 27 - 5n chia het cho n
d ) 2n + 3 chia het cho n - 2
Tim n thuoc Z biet:
a; 7 chia het cho n-3
b; n-4 chia het cho n+2
c; 2n-1 chia het cho n+1
d; 3n+2 chia het chon n-1
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
tim x thuoc N biet n2+3n-13 chia het cho n+3
n2 + 3n chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
Mà n(n + 3) chia hết cho n + 3
=> 13 chia hết cho n + 3
n + 3 thuộc U(13) = {1;13}
n + 3 = 1 => n = -2
n + 3 = 13 => n = 10
Vì n là số tự nhiên nên n = 10
tim n thuoc z , biet
3n-2 chia het cho n+1
3n - 2 chia hết cho n + 1
3n + 3 - 3 - 2 chia hết cho n + 1
3.(n + 1) - 5 chia hết cho n + 1
=> - 5 chia hết cho n + 1
=> n + 1 thuộc Ư(-5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vì n thuộc Z
nên n = {0 ; -2 ; 4 ; -6}
ta có
3n-2chia hết cho n+1
3n-3+1chia hết cho n+1
3(n-1)+1 chia hết cho n+1
vì 3(n-1) chia hết cho n+1 nên 1chia hết cho n+1
do đó n+1=1 hoặc n+1=-1
n =0 hoặc n =-2
Vậy n=0;n=-2
ko chắc nhưng ủng hộ mk nha
a)Chung to so co dang bbbb luon chia het cho 101
b)tim n thuoc N,biet:(3n-2) chia het (n+1)
tim n thuoc N
a,n+2 chia het cho 3n+5
b,n2-2n+9 chia het cho n-2
c,3n+7 chia het cho n-2
a \(n+2⋮3n+5\)
\(\Rightarrow3\left(n+2\right)⋮3n+5\)
\(\Rightarrow3n+5+1⋮3n+5\)
\(\Rightarrow1⋮3n+5\)
\(\Rightarrow3n+5\in\left\{1,-1\right\}\)
\(\Rightarrow n=-2\)(loại)
c \(3n+7⋮n-2\)
\(\Rightarrow2\left(3n+7\right)⋮n-2\)
\(\Rightarrow6n+14⋮n-2\)
\(\Rightarrow3\left(n-2\right)+20⋮n-2\)
\(\Rightarrow20⋮n-2\)
\(\Rightarrow n-2\in\left\{20,1,10,2,5,4,-20,-1,-10,-2,-5,-4\right\}\)
...(như câu a)
1, tim sos uoc cua: 2^4.3^2.5
2, tim n biet: 3n+5 chia het cho : (n thuoc Z)
a, 7
b,11
3, tim a,b biet: 1a5b chia het cho 2,3,5,9
\(1,\)Số ước của \(2^4.3^2.5\)là:
\(\left(4+1\right).\left(2+1\right).\left(1+1\right)=30\)( ước )
3,
\(\overline{1a5b}⋮2;5\Rightarrow b=0\)
Tương tự nó chia hết cho 9 và 3 khi tổng các chữ số của nó chia hết cho 9
Thay vào và tìm ra a.
Kết quả : \(a=3;b=0.\)
tim n thuoc N biet 3n+13 chia het cho 2n+6
theo bài: 3n+13 chia hết cho 2n+6
=> 2(3n+13) chia hết cho 2n+6
=> 6n+26 chia hết cho 2n+6
=> 6n+18+8 chia hết cho 2n+6
=> 3(2n+6)+8 chia hết cho 2n+6
=> 8 chia hết cho 2n+6-> 2n+6 thuộc U(8)
ta có: U(8)=1;2;4;8
=> 2n+6 = 1;2;4;8
=> 2n= -5;-4;-2;2
=> n= -2,5;-2.-1;1
mà n thuộc N => n=1
tim n thuoc N biet 3n+5 chia het cho 2n+1
\(3n+5⋮2n+1\)
Mà \(2n+1⋮2n+1\)
\(\Leftrightarrow\hept{\begin{cases}6n+10⋮2n+1\\6n+3⋮2n+1\end{cases}}\)
\(\Leftrightarrow7⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(7\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2n+1=1\\2n+1=7\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)
Vậy ..