Những câu hỏi liên quan
LB
Xem chi tiết
LT
13 tháng 11 2016 lúc 21:21

Goi UC(2n+1;3n+1)=d 
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d 
hay 6n+3 chia het cho d(1) 
+/3n+1 chia het cho d=>2(3n+1) chia het cho d 
hay 6n+2 chia het cho d(2) 
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d 
=>1 chia het cho d 
=>d la uoc cua 1 
=>d thuoc tap hop 1;-1 
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1

Bình luận (0)
LH
Xem chi tiết
TH
13 tháng 2 2016 lúc 11:33

ươc chung lớn nhất là ?

Bình luận (0)
ND
13 tháng 2 2016 lúc 11:35

 Ước chung lớn nhất của 2n+1 và 3n+1 là 1 nha bạn

Bình luận (0)
LH
13 tháng 2 2016 lúc 11:37

cảm ơn mấy bn nha nhưng mình cũng vừa tìm dc rồi

 

Bình luận (0)
PH
Xem chi tiết
H24
19 tháng 12 2017 lúc 21:43
ko biết
Bình luận (0)
NA
25 tháng 12 2017 lúc 22:59

Goi UCLN(2n+1;3n+1;5n+2)=d 
Ta co:

+/2n+1 chia het cho d(1)
+/3n+1 chia het cho d(2) 

+ 5n+2 chia hết cho d (3)
Tu (1); (2) và (3) =>(5n+2-2n-1-3n-1) chia het cho d 
=>0 chia het cho d 
 

Bình luận (0)
PH
27 tháng 2 2018 lúc 20:30

cam on ban

Bình luận (0)
NT
Xem chi tiết
IM
5 tháng 8 2016 lúc 19:50

Goi ƯCLN(2n+1;3n+1) là d

=> \(3\left(2n+1\right)-2\left(3n+1\right)\) chia hết cho d

=> \(6n+3-6n-2\) chia hết cho d

=> 1 chia d

=> d\(\inƯ_{\left(1\right)}\)

=> d=1 ; d= - 1

Mà d lớn nhất

=> d=1

Bình luận (1)
HT
5 tháng 8 2016 lúc 19:52

Đặt UCLN (2n+1 và 3n+1)=d

\(\Rightarrow\) 2n+1 chia hết cho d và 3n+1 chia hết cho d

\(\Rightarrow\) 6n+3 chia hết cho d và 6n+2 chia hết cho d

\(\Rightarrow\) 1 chia hết cho d

\(\Rightarrow\) d=1 \(\Rightarrow\)ƯCLN (2n+1 và 3n+1)=1hihi

 

Bình luận (0)
PL
5 tháng 8 2016 lúc 19:47

Gọi đ=UCLN(2n+1;3n+2)  2n+1 chia hết cho d và 3n+1 chia hết cho d         => 6n+3 chia hết cho d và 6n+2 chia hết cho d   => trừ nhau ta có 1 chia hết cho d. Vậy d=1 kết luận UCLN của ... =1 . (Dùng dấu ngoặc nhọn cho 2 vế cùng chia hết cho d.)

 

 

 

 

Bình luận (0)
DT
Xem chi tiết
NC
30 tháng 11 2019 lúc 13:27

Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
TN
19 tháng 12 2015 lúc 18:42

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Bình luận (0)
NA
Xem chi tiết
AT
Xem chi tiết
DT
Xem chi tiết