Viết số 19951995 thành tổng các số tự nhiên. Tổng các lập phương đó chia cho 6 thì dư bao nhiêu
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Viết số 20152015 thành tổng của các số tự nhiên. Tổng lập phương của các số tự nhiên đó chia cho 6 thì dư bao nhiêu?
\(2015^{2015}=2014.2015^{2014}+2015^{2014}\)
Trên là 1 cách viết
G/s: 2015^2015 có thể viết thành tổng k số tự nhiên bất kì: n1 + n2 +...+nk
Xét \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\) tích của 3 số tự nhiên liên tiếp vừa chia hết cho 2 và vừa chia hết cho 3
mà ( 2; 3) = 1; 2.3 = 6
Do đó: \(n^3-n\) chia hết cho 6
Khi đó:
\(n_1^3-n_1⋮6\)
\(n_2^3-n_2⋮6\)
\(n_3^3-n_3⋮6\)
....
\(n_k^3-n_k⋮6\)
=> \(\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+...+\left(n_k^3-n_k\right)⋮6\)
=> \(\left(n_1^3+n_2^3+...+n_k^3\right)-\left(n_1+n_2+...+n_k\right)⋮6\)
=> \(\left(n_1^3+n_2^3+...+n_k^3\right);\left(n_1+n_2+...+n_k\right)\) có cùng số dư khi chia cho 6
Mặt khác:
\(n_1+n_2+...+n_k=2015^{2015}\equiv\left(-1\right)^{2015}\equiv-1\equiv5\left(mod6\right)\)
=> 2015^2015 chia 6 dư 5
Hoặc có thể làm:
\(n_1+n_2+...+n_k=2015^{2015}\)
vì 2015 chia 6 dư 5 ; 5^2 chia 6 dư 1 => 2015^2 chia 6 dư 1=> 2015^2014 chia 6 dư 1 => 2015^2015 chia 6 dư 5
Vậy Tổng lập phương các số tự nhiên đó chia 6 dư 5
Viết số 19951995 thành tổng của các số tự nhiên . Tổng các lập phương đó chia cho 6 thì dư bao nhiêu?
Đặt 19951995 = a = a1 + a2 + …+ an.
Gọi =____ =_____ + a - a
= (a1 3 - a1) + (a2 3 - a2) + …+ (an 3 - an) + a
Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6
1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3
Đúng không các pn, nhanh lên để chị mình đi học nha
Viết số 19951995 thành tổng của các số tự nhiên. Tổng các lập phương của các số đó chia cho 6 thì dư bao nhiêu?
Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)
Gọi \(S=a_1^3+a_2^3+a_3^3+.....+a_n^3\)
\(=a_1^3+a_2^3+a_3^3+.....+a_n^3-a+a\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+......+\left(a_n^3-a_n\right)+a\)
\(=\left(a_1-1\right)\cdot a_1\cdot\left(a_1+1\right)+\left(a_2-1\right)\cdot a_2\cdot\left(a_2+1\right)+......+\left(a_n-1\right)\cdot a_n.\left(a_n+1\right)+a\)
Dễ thấy toàn bộ hạng tử đều chia hết cho 6 ngoại trừ a.
Do a là số lẻ chia hết cho 3 nên chia 6 dư 3.
Vậy nó chia 6 dư 3
Vậy tổng của các số tự nhiên ở đâu ạ :VV
Viết số 19951995 thành tổng của các số tự nhiên.
Tổng các lập phương của các số đó chia cho 6 thì dư bao nhiêu?
Đặt \(P=1995^{1995}=a_1+a_2+a_3+...+a_n\) (với a1, a2, ..., an là các số tự nhiên và n là số tự nhiên khác 0)
và \(S=a_1^3+a_2^3+a_3^3+a_n^3\)
Xét hiệu
\(S-P=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+...+\left(a_n^3-a_n\right)\)
\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+\left(a_3-1\right)a_3\left(a_3+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)
Ta thấy mỗi số hạng của tổng trên là tích của 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 2
=> Mỗi số hạng đều chia hết cho 6
=> \(\left(S-P\right)⋮6\)
Do đó muốn tìm số dư của S khi chia cho 6, ta chỉ cần tìm số dư của P khi chia cho 6
Lại có \(P=1995^{1995}=\left(1995^3\right)^{665}\) đồng dư với \(3^{665}\) (mod 6)
Mà \(3^k\) (với k là số tự nhiên khác 0) luôn chia 6 dư 3 => \(3^{665}\) chia 6 dư 3
=> P chia 6 dư 3
=> S chia 6 dư 3.
p/s: Học toán với OnlineMath - Online Math có thể thêm kí hiệu đồng dư được không ạ?
Học liệu của ĐH Sư phạm Hà Nội
Viết số 2014^2015 thành tổng của nhiều số tự nhiên . Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu
viết số 1995^1995 thành tổng của các số tự nhiên .tổng các lập phương đó chia cho 6 dư bao nhiêu ?
Viết số 20142015 thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia 6 dư bao nhiêu?
Viết số 19951995 thành tổng của các số tự nhiên .Tổng của các lập phương đó chia 6 dư bao nhiêu?
Đặt 19951995 = a = a1 + a2 + …+ an.
Gọi = + a - a
= (a1 3 - a1) + (a2 3 - a2) + …+ (an 3 - an) + a
Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6
1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3
Viết số 19951995 thành tổng nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiu