Giải phương trình nghiệm nguyên dương
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
Giải phương trình nghiệm nguyên dương: \(2\left(x+y+z\right)=xyz\)
Mong mọi người giúp
TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24
Giải phương trình nghiệm nguyên dương ;\(xyz=3\left(x+y+z\right)\)
sửa lại đề bài : Tìm nghiệm nguyên dương
Tìm nghiệm nguyên dương của phương trình:
\(xyz=2\left(x+y+z\right)\)
Tìm nghiệm nguyên dương của phương trình
a)\(xyz=4\left(x+y+z\right)\)
b)\(5\left(x+y+z+t\right)+7=xyzt\)
c)\(2\left(x+y+z\right)+9=3xyz\)
Giải phương trình nghiệm nguyên: \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=30\)
Ta có \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+\left(x-z\right)^3-\left(x-z\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)
Thay vào pt
\(\Leftrightarrow\left(y-x\right)\left(x-z\right)\left(y-z\right)=10\)
Dễ thấy \(y-z\) là tổng của \(y-x;x-z\)
Mà \(Ư\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\) và ko có số nào là tổng 2 số còn lại có tích bằng 10
Vậy pt vô nghiệm
Giải phương trình nghiệm nguyên
\(x^2^{ }\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)=2\)
giải hệ phương trình
\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)
Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương
GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN DƯƠNG x,y,z \(\hept{\begin{cases}x^3-y^3-z^3=3xyz\\x^2=2\left(y+z\right)\end{cases}}\)
Kết quả là ra y8 nha bạn
kết quả là y8 đó bạn