Những câu hỏi liên quan
NT
Xem chi tiết
ZT
Xem chi tiết
NA
26 tháng 12 2020 lúc 14:25

a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2

b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

Phần c nản quá.

Bình luận (0)
 Khách vãng lai đã xóa
ZT
Xem chi tiết
XO
25 tháng 12 2020 lúc 23:30

a) 2x(x + y) - y(y + 2x) 

= 2x2 + 2xy - y2 - 2xy

= 2x2 - y2

b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)

\(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
Xem chi tiết
H24
14 tháng 12 2018 lúc 19:39

\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)

b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep

c, tt

d, cx r

Bình luận (0)
TP
14 tháng 12 2018 lúc 19:40

a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)

\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)

\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)

Bình luận (0)
H24
14 tháng 12 2018 lúc 19:41

\(a,\frac{1}{x}-\frac{1}{x+1}\)

\(=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}\)

\(=\frac{1}{x\left(x+1\right)}\)

\(b,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)

\(=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{x-y}{xy\left(x-y\right)}=\frac{1}{xy}\)

Bình luận (0)
TK
Xem chi tiết
DH
Xem chi tiết
PH
30 tháng 10 2018 lúc 22:36

ĐK: \(x,y\ne0,x\ne\pm y\)

Phép tính trên bằng:

        \(\left(\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{1}{x+y}.\frac{x^3-y^3}{xy}\right):\frac{x-y}{x}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)xy}\right):\frac{x-y}{x}\)

\(=\left(\frac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}\right):\frac{x-y}{x}\)

\(=\frac{\left(x-y\right)xy}{xy\left(x+y\right)}.\frac{x}{x-y}=\frac{x}{x+y}\)

Bình luận (0)
NT
Xem chi tiết
DV
20 tháng 12 2016 lúc 10:19

\(=\left[\frac{2xy}{\left(x-y\right).\left(x+y\right)}+\frac{x-y}{2.\left(x+y\right)}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)

\(=\frac{4xy+\left(x-y\right).\left(x-y\right)}{2.\left(x-y\right).\left(x+y\right)}.\frac{2x}{x+y}+\frac{x}{y-x}\)

\(=\frac{x^2+2xy+y^2}{\left(x-y\right).\left(x+y\right)^2}.x+\frac{x}{y-x}\)

\(=\frac{x.\left(x+y\right)^2}{\left(x-y\right).\left(x+y\right)^2}+\frac{x}{y-x}\)

\(=\frac{x}{x-y}-\frac{x}{x-y}=0\)

Bạn giùm mik nhé, tks bạn nhiều (:

Bình luận (0)
RP
12 tháng 8 2020 lúc 8:36

sai rồi

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết