Những câu hỏi liên quan
SS
Xem chi tiết
TA
24 tháng 7 2017 lúc 22:08

bạn tham khảo thêm cách này nha Shonogeki No Soma

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)

Đặt  \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)

pt đã cho đc viết lại thành

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\)  (kí hiệu [..] mới đúng nha)

- TH1: a = -b hay  \(\left(x-1\right)^3=-x^3\)  \(\Leftrightarrow2x^3-3x^2+3x-1=0\)  \(\Leftrightarrow x=\frac{1}{2}\)  (Nhận)

- TH2: b = -c hay  \(\left(x+1\right)^3=-x^3\)  \(\Leftrightarrow2x^3+3x^2+3x+1=0\)  \(\Leftrightarrow x=-\frac{1}{2}\)  (Nhận)

- TH3: c = -a hay  \(\left(x+1\right)^3=-\left(x-1\right)^3\)  \(\Leftrightarrow x=0\)  (Loại)

KL:  \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

Bình luận (0)
AN
24 tháng 7 2017 lúc 15:31

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)

\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)

Bình luận (0)
TA
24 tháng 7 2017 lúc 15:33

còn cách khác ko alibaba nguyễn?

Bình luận (0)
H24
Xem chi tiết
AN
1 tháng 3 2018 lúc 13:42

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}-\frac{1}{3x\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(2x^2+6\right)}{\left(x^2-1\right)^3}+\frac{2x^2+6}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x}{\left(x^2-1\right)^3}+\frac{1}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow4x^6+3x^4+3x^2-1=0\)

Đặt \(x^2=a\)

\(\Rightarrow4a^3+3a^2+3a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2+a+1\right)=0\)

\(\Leftrightarrow4a=1\)

\(\Rightarrow4x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Bình luận (0)
PL
27 tháng 2 2018 lúc 20:05

Bài lớp mấy mà khó vậy!Mình ko hiểu!

Bình luận (0)
NA
Xem chi tiết
NM
Xem chi tiết
LH
2 tháng 3 2019 lúc 21:25

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

Bình luận (0)
NM
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết
DL
Xem chi tiết
NN
Xem chi tiết