chứng minh ràng
3n+1 chia het cho 11-2n
Chứng minh:
a) 2n + 11...1 chia het cho 3 ( 11...1 gom n chu so)
b) 10^n + 18n - 1 chia het cho 27
c) 10^n + 72n - 1 chia het cho 81
Chứng minh :
11 x 2n chia het 2n - 1
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
Chứng minh rằng 2n+3 chia het cho 3n+1
Sai đề rùi!!!
Chắc đề bài là:
Tìm STN n để 2n+3 chia hết cho 3n+1
chung minh rang
2n+11.....1(co n chu so 1)chia het cho 3
số có 1 chữ số x với 2 thì tổng là :0;2;4;6;8;10;12;14;16;18
2n+11.....1 chia hết 3
chung minh rang
2n+11....1 chia het cho 3(co n chu so 1)
Có: 2n + 111...11=3n-n+111....111(n chữ số 1) = 3n+(111...111- n)
Ta thấy: 3n chia hết cho 3
11...11(n chữ số 1) có tổng các chữ số là n , suy ra 11...11(n chữ số 1) và n có cùng số dư trong phép chia cho 3, suy ra hiệu của 11...1(n chữ số 1)-n sẽ chia hết cho 3.
Suy ra 3n+ (111...1(n chữ số 1)-n chia hết cho 3
Vậy 2n +111...1(n chữ số 1) chia hết cho 3(đpcm)
chung minh 555..555 2n chu so 5 chia het cho 11 nhung khong chia het cho 125
Gỉa sử 555...555 chia hết cho 125
=> 5.111...111 chia hết cho 5.25
=> 111...111 chia hết cho 25
Mà tận cùng là chữ số 1 nên ko chia hết cho 25
=> Vô lí
=> 555...555 không chia hết cho 125
1, Chứng minh n(2n+7)x(7n+1) chia het cho 6
\(B=n\left(2n+7\right)\left(7n+1\right)\)
ta cần chứng minh B chia hêt cho 2 và cho 3 mọi n thuộc N
(*) C/m B chia hết cho 2
với n chẵn hay n=2k hiển nhiên B chia cho 2
với n lẻ hay n=2k+1 =>(7n+1)=7(2k+1)+1=14k+2=2(7k+1) chia hết cho 2
=> B chia hết cho 2 (*) dduocj c/m
(**)c/m B chia hết cho 3
với n chia hết cho 3; n=3k hiển nhiên B chia hết cho 3
với n chia 3 dư 1: n=3k+1 => (2n+7)=2(3k+1)+7=6k+2+1=6k+3=3(3k+1) chia hết cho 3
với n chia 3 dư 2: n=3k+2 => (7n+1)=7(3k+2)+1=21k+14+1=21k+15=3(7k+5) chia hét cho 3
(**) dduocj c/m
(*) &(**) => B chia hết cho 6=> dpcm