cho a,b dương thỏa mãn \(a^3+b^3=3ab-1\)
cm a2018-b2018=2
Cho a,b là các só thực dương thỏa mãn a+b=2. Tìm GTNN của
A= \(a^3+b^3+\dfrac{6}{a^2+b^2}+3ab\)
Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)
\(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)
\(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)
\(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)
Dấu "=" xảy ra ⇔ a=b=1
Cho a, b là hai số nguyên dương thỏa mãn \(\dfrac{a+b^3}{a^2+3ab+3b^2-1}\) là một số nguyên. Chứng minh rằng a2 + 3ab + 3b2 - 1 chia hết cho lập phương của một số nguyên lớn hơn 1
Gấp gấp gấp, mai thi rồi... Có ai giúp nhanh không nào :( --- Câu 1 : Cho a, b, c, thỏa mãn a2 + b2 + c2 =< 18. Tìm giá trị nhỏ nhất của biểu thức P= 3ab + bc + ca
Câu 2: cho 2 số dương a, b thỏa mãn a + b + ab =< 3 . chứng minh bất đẳng thức : 1/(a + b) – 1/(a + b - 3) – (a + b) >= (ab – 3) / 4
Cho các số dương a,b để thỏa mãn : \(a^3+b^3=3ab-1\) CMR:\(a^{2018}+b^{2019}=2\)
Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo
Tìm các số nguyên dương a,b thỏa mãn: a3+b3-3ab+1 là số nguyên tố
Bạn tham khảo nhé!!!!
a3+b3=3ab−1
⇔a3+b3−3ab+1=0⇔a3+b3−3ab+1=0
⇔(a+b)3−3ab(a+b)−3ab+1=0
⇔(a+b)3+1−3ab(a+b+1)=0
⇔(a+b+1)[(a+b)2−(a+b)+1]−3ab(a+b+1)=0
⇔(a+b+1)(a2+b2+1−ab−a−b)=0
Vì a,b>0a,b>0 nên a+b+1≠0
Do đó:
a2+b2+1−a−b−ab=0
⇔\(\frac{\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2}{2}\)=0
⇔a=b=1
Do đó: a2018+b2019=1+1=2
Ta có đpcm.
đề lm j cho a3+b3=3ab-1 đâu bạn
Cho hai số thực dương a, b thỏa mãn a + b + 3ab = 1. Tìm giá trị lớn nhất của biểu thức A = \(\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{3ab}{a+b}\)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
Cho hai số dương a,b thỏa mãn a+b=1 . Tìm Gtnn của biểu thức :
P= 1/1+3ab+a^2 + 1/1+3ab+ b^2
Áp dụng bđt AM-GM ta có
\(P\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{\left(a+b\right)^2+4ab+1}=\frac{2}{1+2ab}\)
Lại có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Cho các số nguyên dương a,b thỏa mãn a.b=2.(a-b). Tìm các số a,b thỏa mãn đẳng thức trên.
Cho a,b là các số thực dương thỏa mãn a+b=2 .Tìm giá trị nhỏ nhất của biểu thức A= a3+b3+\(\frac{6}{a^2+b^2}\)+3ab
cho 3 số dương a,b,c thỏa mãn abc=1 CM 2/a^3(b+c) + 2/b^3(c+a) + 2/c^3(a+b)>=3
Câu hỏi của Lê Văn Hoàng - Toán lớp 9 - Học toán với OnlineMath