Những câu hỏi liên quan
ND
Xem chi tiết
EC
5 tháng 12 2021 lúc 12:49

Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)

               \(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)

               \(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)

               \(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)

Dấu "=" xảy ra ⇔ a=b=1

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
VO
Xem chi tiết
ST
26 tháng 11 2018 lúc 15:26

Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo

Bình luận (0)
H24
Xem chi tiết
VL
28 tháng 10 2019 lúc 22:48

Bạn tham khảo nhé!!!!

a3+b3=3ab−1

⇔a3+b3−3ab+1=0⇔a3+b3−3ab+1=0

⇔(a+b)3−3ab(a+b)−3ab+1=0

⇔(a+b)3+1−3ab(a+b+1)=0

⇔(a+b+1)[(a+b)2−(a+b)+1]−3ab(a+b+1)=0

⇔(a+b+1)(a2+b2+1−ab−a−b)=0

Vì a,b>0a,b>0 nên a+b+1≠0

Do đó:

a2+b2+1−a−b−ab=0

\(\frac{\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2}{2}\)=0

a=b=1

Do đó: a2018+b2019=1+1=2

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 10 2019 lúc 23:11

đề lm j cho a3+b3=3ab-1 đâu bạn

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
DQ
8 tháng 6 2021 lúc 14:09

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
GL
10 tháng 3 2020 lúc 10:19

Áp dụng bđt AM-GM ta có

\(P\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{\left(a+b\right)^2+4ab+1}=\frac{2}{1+2ab}\)

Lại có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
3 tháng 3 2021 lúc 19:17

Cho các số nguyên dương a,b thỏa mãn  a.b=2.(a-b). Tìm các số a,b thỏa mãn đẳng thức trên.

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
NH
Xem chi tiết
NT
12 tháng 10 2017 lúc 21:49

Câu hỏi của Lê Văn Hoàng - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)