Những câu hỏi liên quan
PP
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
NC
29 tháng 9 2020 lúc 8:25

Đặt: \(t^2=x^2+x+6\)

=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)

=> \(4t^2-\left(2x+1\right)^2=23\)

<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)

Chia các trường hợp: => x và t

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
GC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
24 tháng 2 2020 lúc 19:43

A là số chính phương, suy ra

\(x^2-6x+6=k^2\)          \(\left(k\inℕ\right)\)

\(\Leftrightarrow\left(x-3\right)^2-3=k^2\Leftrightarrow\left(x-3\right)^2-k^2=3\Leftrightarrow\left(x-3-k\right)\left(x-3+k\right)=3\)

Vì \(x;k\inℕ\Rightarrow x-3-k< x-3+k\)nên ta có các trường hợp sau

\(\hept{\begin{cases}x-3-k=1\\x-3+k=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\left(tm\right)\\k=1\end{cases}}\)

\(\hept{\begin{cases}x-3-k=-3\\x-3+k=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(ktm\right)\\k=1\end{cases}}}\)

Vậy x=5 thì giá trị biểu thức A là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NA
24 tháng 2 2020 lúc 20:43

A = x2 - 6x + 6 

    = x2 - 2.x.3 + 32 - 3

     =(x - 3)2 - 3

Ta có: \(\left(x-3\right)^2\ge0\forall x\)=> (x - 3)2 - 3 < 0 =>A < 0 =>A không là số chính phương(vì số chính phương luôn lớnhơnhoặc bằng0) 

=> \(x\in\varnothing\)

Vậy không có số nguyên tố x nào thỏa mãn đề bài

Bình luận (0)
 Khách vãng lai đã xóa
NA
24 tháng 2 2020 lúc 20:43

À mình nhần rồi sr các bạn

Bình luận (0)
 Khách vãng lai đã xóa