Những câu hỏi liên quan
LN
Xem chi tiết
LH
5 tháng 7 2016 lúc 15:17

a) n+2 chia hết cho n - 1

=> n-1 + 3 chia hết cho n -1

=> n - 1 thuộc Ư (3) = {1;-1;3;-3}

=> n = {2;0;4;-2}

b) n +4 chia hết cho n + 1 

=> n + 1 + 3 chia hết cho n + 1

=> n + 1 thuộc Ư (3) = {1;-1;3;-3}

=> n = {0;-2;2;-4}

c) 2n + 7 chia hết cho n + 1

=> n + 1 + n + 1 + 5 chia hết cho n + 1

=> n + 1 thuộc Ư(5)

=> n + 1 = {1;-1;5;-5}

=> n = {0;-2;4;-6}

d) 2n + 1 chia hết cho n - 3

=> n - 3 + n - 3 - 5 chia hết cho n - 3

=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}

=> n  = {4;2;8;-2}

Bình luận (0)
NT
5 tháng 7 2016 lúc 15:24

a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1

Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n-11-13-3
n204-2

=> n={2;0;4;-2}

b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1

Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n+113-1-3
n02-2-4

=> n={0;2;-2;-4}

c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1

Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

Ta có bảng sau:

n+115-1-5
n04-2-6

=> n={0;4;-2;-6}

d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3

Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau:

n-317-1-7
n4102-4

=> n={4;10;2;-4}

Gì mak zài zữ zậy bạn ucche

Bình luận (0)
NN
5 tháng 7 2016 lúc 15:12

Nếu mk giải thì thì dài lắm ngạibucminh

Bình luận (0)
MB
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
TP
9 tháng 2 2021 lúc 18:16

Sai thì sửa,chửa thì đẻ

a)

n+4 chia hết cho n+1

n+1+3 chia hết cho n+1

ta có:

n+1 chia hết cho n+1

để n+1+3 chia hết cho n+1 thì 3 pahỉ chia hết cho n+1 hay n+1 thuộc Ư(3)={1;3}

=>n thuộc {0,2}

Bình luận (0)
 Khách vãng lai đã xóa
TP
9 tháng 2 2021 lúc 18:17

b)

Ta có: n2+4⋮n+2 (I)

Mà n+2⋮n+2

⇒n(n+2)⋮n+2

⇒n2+2n⋮n+2 (II)

Từ (I) và (II) ⇒(n2+2n)−(n2+4)⋮n+2

⇒2n−4⋮n+2

⇒(2n+4)−8⋮n+2

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NG
15 tháng 12 2016 lúc 20:22

n mũ 2+3n+4 chia hết cho n+3

=>n(n+3)+4 chia hết cho n+3

=>n(n+3) chia hết cho n+3

và 4 chia hết cho n+3

hay n+3 thuộc Ư(4)

Mà Ư(4)=(-4;-2;-1;1;2;4)

=>n=2;4;7

Bình luận (0)
TN
Xem chi tiết
NP
16 tháng 10 2016 lúc 16:52

a) 2n + 7 chia hết cho n - 2

<=> 2n - 4 + 11 chia hết cho n - 2

<=> 2(n - 2) + 11 chia hết cho n - 2

<=> 11 chia hết cho n - 2

<=> n - 2 thuộc Ư(11)={-1;1;-11;11}

=> n thuộc {1;3;13}

Bình luận (0)
NP
16 tháng 10 2016 lúc 16:55

n^2 + 3n + 4 chia hết cho n + 3

<=> n(n + 3) + 4 chia hết cho n + 3

<=> 4 chia hết cho n + 3

<=> n + 3 thuộc Ư(4)={-1;1;-4;4}

=> n thuộc {2;4;7}

Bình luận (0)
TN
16 tháng 10 2016 lúc 16:57

Còn b ?

Bình luận (0)
ND
Xem chi tiết
QH
1 tháng 8 2015 lúc 10:58

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

Bình luận (0)
LD
13 tháng 10 2015 lúc 20:15

1. n = 301

2.a) n = 99

b) không có

c) n = 774

Bình luận (0)
DP
5 tháng 11 2015 lúc 17:55

qua de ma cung phai hoi

 

Bình luận (0)
NL
Xem chi tiết
SK
28 tháng 7 2016 lúc 14:49

N+4 chia hết cho N+1

=> N + 1 + 3 chia hết cho N + 1

=> 3 chia hết cho N + 1

=> N + 1 thuộc Ư(3) = {1 ; -1 ; 3 ; -3}

Thế n + 1 vô từng ước của 3 rồi tìm x

bài b giống vậy

2N + 13 chia hết cho N + 4

=> 2N + 8 + 5 chia hết cho N + 4

=> 2 . (N + 4) + 5 chia hết cho N + 4

=> 5 chia hết cho N + 4

=> N + 4 thuộc Ư(5) = {1 ; -1 ; 5; -5}

còn lại giống bài a với b

Bình luận (0)
XX
Xem chi tiết
H24
29 tháng 7 2017 lúc 16:29

1) => n thuộc Ư(4)={1,2,4}

Vậy n = {1,2,4}

2) \(\frac{6}{n+1}\)

=> n+1 thuộc Ư(6)={1,2,3,6}

Ta có bảng :

n+11236
n0125

Vậy n={0,1,2,5}

3) =>n thuộc Ư(8)={1,2,4,8}

Vậy n n={1,2,4,8}

4)\(\frac{n+3}{n}=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)

=> n thuộc Ư(3)={1,3}

Vậy n = {1,3}

5) \(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}=1+\frac{5}{n+1}\)

=> n+1 thuộc Ư(5) = {1,5}

Ta có : n+1=1

n = 1-1

n=0

Và n+1=5

n=5-1

n=4 

Vậy n = 4

Bình luận (0)